Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
PLoS One ; 19(5): e0302639, 2024.
Article in English | MEDLINE | ID: mdl-38739639

ABSTRACT

Heart failure (HF) encompasses a diverse clinical spectrum, including instances of transient HF or HF with recovered ejection fraction, alongside persistent cases. This dynamic condition exhibits a growing prevalence and entails substantial healthcare expenditures, with anticipated escalation in the future. It is essential to classify HF patients into three groups based on their ejection fraction: reduced (HFrEF), mid-range (HFmEF), and preserved (HFpEF), such as for diagnosis, risk assessment, treatment choice, and the ongoing monitoring of heart failure. Nevertheless, obtaining a definitive prediction poses challenges, requiring the reliance on echocardiography. On the contrary, an electrocardiogram (ECG) provides a straightforward, quick, continuous assessment of the patient's cardiac rhythm, serving as a cost-effective adjunct to echocardiography. In this research, we evaluate several machine learning (ML)-based classification models, such as K-nearest neighbors (KNN), neural networks (NN), support vector machines (SVM), and decision trees (TREE), to classify left ventricular ejection fraction (LVEF) for three categories of HF patients at hourly intervals, using 24-hour ECG recordings. Information from heterogeneous group of 303 heart failure patients, encompassing HFpEF, HFmEF, or HFrEF classes, was acquired from a multicenter dataset involving both American and Greek populations. Features extracted from ECG data were employed to train the aforementioned ML classification models, with the training occurring in one-hour intervals. To optimize the classification of LVEF levels in coronary artery disease (CAD) patients, a nested cross-validation approach was employed for hyperparameter tuning. HF patients were best classified using TREE and KNN models, with an overall accuracy of 91.2% and 90.9%, and average area under the curve of the receiver operating characteristics (AUROC) of 0.98, and 0.99, respectively. Furthermore, according to the experimental findings, the time periods of midnight-1 am, 8-9 am, and 10-11 pm were the ones that contributed to the highest classification accuracy. The results pave the way for creating an automated screening system tailored for patients with CAD, utilizing optimal measurement timings aligned with their circadian cycles.


Subject(s)
Electrocardiography , Heart Failure , Machine Learning , Stroke Volume , Ventricular Function, Left , Humans , Heart Failure/physiopathology , Heart Failure/diagnosis , Female , Male , Electrocardiography/methods , Aged , Ventricular Function, Left/physiology , Middle Aged , Circadian Rhythm/physiology , Support Vector Machine , Neural Networks, Computer
2.
Comput Methods Programs Biomed ; 248: 108107, 2024 May.
Article in English | MEDLINE | ID: mdl-38484409

ABSTRACT

BACKGROUND AND OBJECTIVE: Heart failure (HF) is a multi-faceted and life-threatening syndrome that affects more than 64.3 million people worldwide. Current gold-standard screening technique, echocardiography, neglects cardiovascular information regulated by the circadian rhythm and does not incorporate knowledge from patient profiles. In this study, we propose a novel multi-parameter approach to assess heart failure using heart rate variability (HRV) and patient clinical information. METHODS: In this approach, features from 24-hour HRV and clinical information were combined as a single polar image and fed to a 2D deep learning model to infer the HF condition. The edges of the polar image correspond to the timely variation of different features, each of which carries information on the function of the heart, and internal illustrates color-coded patient clinical information. RESULTS: Under a leave-one-subject-out cross-validation scheme and using 7,575 polar images from a multi-center cohort (American and Greek) of 303 coronary artery disease patients (median age: 58 years [50-65], median body mass index (BMI): 27.28 kg/m2 [24.91-29.41]), the model yielded mean values for the area under the receiver operating characteristics curve (AUC), sensitivity, specificity, normalized Matthews correlation coefficient (NMCC), and accuracy of 0.883, 90.68%, 95.19%, 0.93, and 92.62%, respectively. Moreover, interpretation of the model showed proper attention to key hourly intervals and clinical information for each HF stage. CONCLUSIONS: The proposed approach could be a powerful early HF screening tool and a supplemental circadian enhancement to echocardiography which sets the basis for next-generation personalized healthcare.


Subject(s)
Coronary Artery Disease , Deep Learning , Heart Failure , Humans , Middle Aged , Heart , Heart Rate/physiology , Heart Failure/diagnostic imaging
3.
IEEE J Biomed Health Inform ; 28(4): 1803-1814, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38261492

ABSTRACT

One in every four newborns suffers from congenital heart disease (CHD) that causes defects in the heart structure. The current gold-standard assessment technique, echocardiography, causes delays in the diagnosis owing to the need for experts who vary markedly in their ability to detect and interpret pathological patterns. Moreover, echo is still causing cost difficulties for low- and middle-income countries. Here, we developed a deep learning-based attention transformer model to automate the detection of heart murmurs caused by CHD at an early stage of life using cost-effective and widely available phonocardiography (PCG). PCG recordings were obtained from 942 young patients at four major auscultation locations, including the aortic valve (AV), mitral valve (MV), pulmonary valve (PV), and tricuspid valve (TV), and they were annotated by experts as absent, present, or unknown murmurs. A transformation to wavelet features was performed to reduce the dimensionality before the deep learning stage for inferring the medical condition. The performance was validated through 10-fold cross-validation and yielded an average accuracy and sensitivity of 90.23 % and 72.41 %, respectively. The accuracy of discriminating between murmurs' absence and presence reached 76.10 % when evaluated on unseen data. The model had accuracies of 70 %, 88 %, and 86 % in predicting murmur presence in infants, children, and adolescents, respectively. The interpretation of the model revealed proper discrimination between the learned attributes, and AV channel was found important (score 0.75) for the murmur absence predictions while MV and TV were more important for murmur presence predictions. The findings potentiate deep learning as a powerful front-line tool for inferring CHD status in PCG recordings leveraging early detection of heart anomalies in young people. It is suggested as a tool that can be used independently from high-cost machinery or expert assessment.


Subject(s)
Deep Learning , Heart Defects, Congenital , Adolescent , Child , Humans , Infant, Newborn , Heart Auscultation , Heart Murmurs/diagnostic imaging , Heart Murmurs/etiology , Phonocardiography , Auscultation , Heart Defects, Congenital/complications , Heart Defects, Congenital/diagnosis
4.
Article in English | MEDLINE | ID: mdl-38082901

ABSTRACT

People with Parkinson's Disease (PwP) experience a significant deterioration of their daily life quality due to non-motor symptoms, with gastrointestinal dysfunctions manifesting as a vanguard of the latter. Electrogastrography (EGG) is a noninvasive diagnostic tool that can potentially provide biomarkers for the monitoring of dynamic gastric alterations that are related to daily lifestyle and treatment regimens. In this work, a robust analysis of EGG dynamics is introduced to evaluate the effect of probiotic treatment on PwP. The proposed framework, namely biSEGG, introduces a Swarm Decomposition-based enhancement of the EGG, combined with Bispectral feature engineering to model the underlying Quadratic Phase Coupling interactions between the gastric activity oscillatory components of EGG. The biSEGG features are benchmarked against the conventional Power Spectrum-based ones and evaluated through machine learning classifiers. The experimental results, when biSEGG was applied on data epochs from 11 PwP (probiotic vs placebo, AUROC: 0.67, Sensitivity/Specificity: 75/58%), indicate the superiority of biSEGG over Power Spectrum-based approaches and justify the efficiency of biSEGG in capturing and explaining intervention- and meal consumption-related alterations of the gastric activity in PwP.Clinical relevance- biSEGG holds potential for dynamic monitoring of gastrointestinal dysfunction and health status of PwP across diverse daily life scenarios.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Machine Learning , Quality of Life , Health Status , Electromyography
5.
Article in English | MEDLINE | ID: mdl-38082916

ABSTRACT

Attention Deficit/Hyperactivity Disorder (ADHD) is a common neurodevelopmental disorder mainly affecting children. ADHD children brain activity is reported to present alterations from neurotypically developed children, yet establishment of an EEG biomarker, which is of high importance in clinical practice and research, has not been achieved. In this work, task-related EEG recordings from 61 ADHD and 60 age-matched non-ADHD children are analyzed to examine the underlying Cross-Frequency Coupling phenomena. The proposed framework introduces personalized brain rhythm extraction in the form of oscillatory modes via Swarm Decomposition, allowing for the transition from sensor-level connectivity to source-level connectivity. Oscillatory modes are then subjected to a phase locking value-based feature extraction and the efficiency of the extracted features in separating ADHD from non-ADHD individuals is evaluated by means of a nested 5-fold cross validation scheme. The experimental results of the proposed framework (Area Under the Receiver Operating Characteristics Curve-AUROC: 0.9166) when benchmarked against the commonly used filter-based brain rhythm extraction (AUROC: 0.8361) underscore its efficiency and demonstrate its overall superiority over other state-of-the-art functional connectivity approaches in this classification task for this dataset.Clinical relevance-This framework provides novel insights about brain regions of interest that are involved in ADHD task-related function and holds promise in providing objective ADHD biomarkers by extending classic sensor-level connectivity to source-level.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Child , Humans , Attention Deficit Disorder with Hyperactivity/diagnosis , Brain , Electroencephalography/methods
6.
PLoS One ; 18(12): e0295653, 2023.
Article in English | MEDLINE | ID: mdl-38079417

ABSTRACT

Heart Failure (HF) significantly impacts approximately 26 million people worldwide, causing disruptions in the normal functioning of their hearts. The estimation of left ventricular ejection fraction (LVEF) plays a crucial role in the diagnosis, risk stratification, treatment selection, and monitoring of heart failure. However, achieving a definitive assessment is challenging, necessitating the use of echocardiography. Electrocardiogram (ECG) is a relatively simple, quick to obtain, provides continuous monitoring of patient's cardiac rhythm, and cost-effective procedure compared to echocardiography. In this study, we compare several regression models (support vector machine (SVM), extreme gradient boosting (XGBOOST), gaussian process regression (GPR) and decision tree) for the estimation of LVEF for three groups of HF patients at hourly intervals using 24-hour ECG recordings. Data from 303 HF patients with preserved, mid-range, or reduced LVEF were obtained from a multicentre cohort (American and Greek). ECG extracted features were used to train the different regression models in one-hour intervals. To enhance the best possible LVEF level estimations, hyperparameters tuning in nested loop approach was implemented (the outer loop divides the data into training and testing sets, while the inner loop further divides the training set into smaller sets for cross-validation). LVEF levels were best estimated using rational quadratic GPR and fine decision tree regression models with an average root mean square error (RMSE) of 3.83% and 3.42%, and correlation coefficients of 0.92 (p<0.01) and 0.91 (p<0.01), respectively. Furthermore, according to the experimental findings, the time periods of midnight-1 am, 8-9 am, and 10-11 pm demonstrated to be the lowest RMSE values between the actual and predicted LVEF levels. The findings could potentially lead to the development of an automated screening system for patients with coronary artery disease (CAD) by using the best measurement timings during their circadian cycles.


Subject(s)
Heart Failure , Ventricular Function, Left , Humans , Stroke Volume , Heart Failure/diagnostic imaging , Electrocardiography , Echocardiography
7.
Article in English | MEDLINE | ID: mdl-38083331

ABSTRACT

Emotion recognition in conversations using artificial intelligence (AI) has recently gained a lot of attention, as it can provide additional emotion cues that can be correlated with human social behavior. An extension towards an AI-based emotional climate (EC) recognition, i.e., the recognition of the joint emotional atmosphere dynamically created and perceived by the peers throughout a conversation, is proposed here. In our approach, namely MLBispeC (Machine Learning Based Bispectral Classification), the peers' speech signals during their conversation are subjected to time-windowed bispectral analysis, allowing for feature extraction related to dynamic harmonics nonlinear interactions. In addition, peers' affect dynamics, derived from their same time-windowed emotion labeling, are combined to form an extended feature vector, inputted into two well-known machine learning classifiers (Support Vector Machine, K-Nearest Neighbor). MLBispeC was evaluated on the Interactive Emotional Dyadic Motion Capture (IEMOCAP) open access dataset, which contains 2D emotions, i.e., Arousal (A) and valence (V) that are divided into (low/high) classes. The experimental results have shown that MLBispeC outperforms previous state-of-the-art techniques, achieving an accuracy of 0.826A/0.754V, sensitivity of 0.864A/0.774V, and area under the curve (AUC) of 0.821A/0.799V. This demonstrates the effectiveness of MLBispeC to objectively recognize peers' EC during their conversation, allowing for insights into their emotional and social interactions.Clinical relevance-Unobtrusive, objective and dynamic recognition of the EC built during peers' conversation can scaffold effective assessment of patients with physiological, psychological, and mental diseases, at various age ranges (children, adults, and older adults).


Subject(s)
Artificial Intelligence , Speech , Child , Humans , Aged , Emotions/physiology , Recognition, Psychology , Arousal
8.
Article in English | MEDLINE | ID: mdl-38083408

ABSTRACT

After the breakthroughs of Transformer networks in Natural Language Processing (NLP) tasks, they have led to exciting progress in visual tasks as well. Nonetheless, there has been a parallel growth in the number of parameters and the amount of training data, which led to the conclusion that Transformers are not suited for small datasets. This paper is the first to convey the feasibility of Compact Convolutional Transformers (CCT) for the prediction of Parkinsonian postural tremor based on the Bispectrum (BS) representation of IMU accelerometer time series. The dataset includes tri-axial accelerometer signals collected unobtrusively in-the-wild while subjects are on a phone call, and labelled by neurologists and signal processing experts. The BS is a noise-immune, higher-order representation that reflects a signal's deviation from Gaussianity and measures quadratic phase coupling. We performed comparative classification experiments using the CCT, pre-trained CNNs such as VGG-16 and ResNet-50, and the conventional Vision Transformer (ViT). Our model achieves competitive prediction accuracy and F1 score of 96% with only 1.016 M trainable parameters, compared to the ViT with 21.659 M trainable parameters, in a five-fold cross-validation scheme. Our model also outperforms pre-trained CNNs such as VGG-16 and ResNet-50. Furthermore, we show that the performance gains are maintained when training on a larger dataset of BS images. Our effort here is motivated by the hypothesis that data-efficient transformers outperform transfer learning using pre-trained CNNs, paving the way for promising deep learning architecture for small-scale, novel and noisy medical imaging datasets.Clinical relevance- Novel deep learning model for unobtrusive prediction of Parkinsonian Postural Tremor from Bispectrum image representation of tri-axial accelerometer signals collected in-the-wild.


Subject(s)
Electric Power Supplies , Tremor , Humans , Tremor/diagnosis , Natural Language Processing , Normal Distribution , Accelerometry
9.
Article in English | MEDLINE | ID: mdl-38083567

ABSTRACT

Heart failure refers to the inability of the heart to pump enough amount of blood to the body. Nearly 7 million people die every year because of its complications. Current gold-standard screening techniques through echocardiography do not incorporate information about the circadian rhythm of the heart and clinical information of patients. In this vein, we propose a novel approach to integrate 24-hour heart rate variability (HRV) features and patient profile information in a single multi-parameter and color-coded polar representation. The proposed approach was validated by training a deep learning model from 7,575 generated images to predict heart failure groups, i.e., preserved, mid-range, and reduced left ventricular ejection fraction. The developed model had overall accuracy, sensitivity, and specificity of 93%, 88%, and 95%, respectively. Moreover, it had a high area under the receiver operating characteristics curve (AUROC) of 0.88 and an area under the precision-recalled curve (AUPR) of 0.79. The novel approach proposed in this study suggests a new protocol for assessing cardiovascular diseases to act as a complementary tool to echocardiography as it provides insights on the circadian rhythm of the heart and can be potentially personalized according to patient clinical profile information.Clinical relevance- Implementing polar representations with deep learning in clinical settings to supplement echocardiography leverages continuous monitoring of the heart's circadian rhythm and personalized cardiovascular medicine while reducing the burden on medical practitioners.


Subject(s)
Cardiovascular Diseases , Deep Learning , Heart Failure , Humans , Stroke Volume/physiology , Ventricular Function, Left/physiology , Heart Failure/diagnosis
10.
Front Bioeng Biotechnol ; 11: 1261022, 2023.
Article in English | MEDLINE | ID: mdl-37920244

ABSTRACT

The growing global prevalence of heart failure (HF) necessitates innovative methods for early diagnosis and classification of myocardial dysfunction. In recent decades, non-invasive sensor-based technologies have significantly advanced cardiac care. These technologies ease research, aid in early detection, confirm hemodynamic parameters, and support clinical decision-making for assessing myocardial performance. This discussion explores validated enhancements, challenges, and future trends in heart failure and dysfunction modeling, all grounded in the use of non-invasive sensing technologies. This synthesis of methodologies addresses real-world complexities and predicts transformative shifts in cardiac assessment. A comprehensive search was performed across five databases, including PubMed, Web of Science, Scopus, IEEE Xplore, and Google Scholar, to find articles published between 2009 and March 2023. The aim was to identify research projects displaying excellence in quality assessment of their proposed methodologies, achieved through a comparative criteria-based rating approach. The intention was to pinpoint distinctive features that differentiate these projects from others with comparable objectives. The techniques identified for the diagnosis, classification, and characterization of heart failure, systolic and diastolic dysfunction encompass two primary categories. The first involves indirect interaction with the patient, such as ballistocardiogram (BCG), impedance cardiography (ICG), photoplethysmography (PPG), and electrocardiogram (ECG). These methods translate or convey the effects of myocardial activity. The second category comprises non-contact sensing setups like cardiac simulators based on imaging tools, where the manifestations of myocardial performance propagate through a medium. Contemporary non-invasive sensor-based methodologies are primarily tailored for home, remote, and continuous monitoring of myocardial performance. These techniques leverage machine learning approaches, proving encouraging outcomes. Evaluation of algorithms is centered on how clinical endpoints are selected, showing promising progress in assessing these approaches' efficacy.

11.
Expert Rev Cardiovasc Ther ; 21(7): 531-543, 2023.
Article in English | MEDLINE | ID: mdl-37300317

ABSTRACT

INTRODUCTION: Guidelines advise ongoing follow-up of patients after hypertensive disorders of pregnancy (HDP) to assess cardiovascular risk and manage future patient-specific pregnancy conditions. However, there are limited tools available to monitor patients, with those available tending to be simple risk assessments that lack personalization. A promising approach could be the emerging artificial intelligence (AI)-based techniques, developed from big patient datasets to provide personalized recommendations for preventive advice. AREAS COVERED: In this narrative review, we discuss the impact of integrating AI and big data analysis for personalized cardiovascular care, focusing on the management of HDP. EXPERT OPINION: The pathophysiological response of women to pregnancy varies, and deeper insight into each response can be gained through a deeper analysis of the medical history of pregnant women based on clinical records and imaging data. Further research is required to be able to implement AI for clinical cases using multi-modality and multi-organ assessment, and this could expand both knowledge on pregnancy-related disorders and personalized treatment planning.


Subject(s)
Artificial Intelligence , Hypertension, Pregnancy-Induced , Female , Humans , Pregnancy , Hypertension, Pregnancy-Induced/diagnosis , Hypertension, Pregnancy-Induced/therapy , Risk Assessment , Delivery of Health Care
12.
Biosens Bioelectron ; 235: 115387, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37229842

ABSTRACT

Advances in consumer electronics, alongside the fields of microfluidics and nanotechnology have brought to the fore low-cost wearable/portable smart devices. Although numerous smart devices that track digital biomarkers have been successfully translated from bench-to-bedside, only a few follow the same fate when it comes to track traditional biomarkers. Current practices still involve laboratory-based tests, followed by blood collection, conducted in a clinical setting as they require trained personnel and specialized equipment. In fact, real-time, passive/active and robust sensing of physiological and behavioural data from patients that can feed artificial intelligence (AI)-based models can significantly improve decision-making, diagnosis and treatment at the point-of-procedure, by circumventing conventional methods of sampling, and in person investigation by expert pathologists, who are scarce in developing countries. This review brings together conventional and digital biomarker sensing through portable and autonomous miniaturized devices. We first summarise the technological advances in each field vs the current clinical practices and we conclude by merging the two worlds of traditional and digital biomarkers through AI/ML technologies to improve patient diagnosis and treatment. The fundamental role, limitations and prospects of AI in realizing this potential and enhancing the existing technologies to facilitate the development and clinical translation of "point-of-care" (POC) diagnostics is finally showcased.


Subject(s)
Biosensing Techniques , Wearable Electronic Devices , Humans , Biosensing Techniques/methods , Artificial Intelligence , Point-of-Care Testing , Biomarkers
13.
Sci Rep ; 13(1): 5828, 2023 04 10.
Article in English | MEDLINE | ID: mdl-37037871

ABSTRACT

Heart failure is characterized by sympathetic activation and parasympathetic withdrawal leading to an abnormal autonomic modulation. Beta-blockers (BB) inhibit overstimulation of the sympathetic system and are indicated in heart failure patients with reduced ejection fraction. However, the effect of beta-blocker therapy on heart failure with preserved ejection fraction (HFpEF) is unclear. ECGs of 73 patients with HFpEF > 55% were recruited. There were 56 patients in the BB group and 17 patients in the without BB (NBB) group. The HRV analysis was performed for the 24-h period using a window size of 1,4 and 8-h. HRV measures between day and night for both the groups were also compared. Percentage change in the BB group relative to the NBB group was used as a measure of difference. RMSSD (13.27%), pNN50 (2.44%), HF power (44.25%) and LF power (13.53%) showed an increase in the BB group relative to the NBB group during the day and were statistically significant between the two groups for periods associated with high cardiac risk during the morning hours. LF:HF ratio showed a decrease of 3.59% during the day. The relative increase in vagal modulated RMSSD, pNN50 and HF power with a decrease in LF:HF ratio show an improvement in the parasympathetic tone and an overall decreased risk of a cardiac event especially during the morning hours that is characterized by a sympathetic surge.


Subject(s)
Heart Failure , Myocardial Ischemia , Humans , Heart Rate/physiology , Heart Failure/drug therapy , Stroke Volume , Heart , Myocardial Ischemia/drug therapy , Circadian Rhythm/physiology , Adrenergic beta-Antagonists/pharmacology , Adrenergic beta-Antagonists/therapeutic use
14.
NPJ Parkinsons Dis ; 9(1): 49, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36997573

ABSTRACT

Neurologists nowadays no longer view neurodegenerative diseases, like Parkinson's and Alzheimer's disease, as single entities, but rather as a spectrum of multifaceted symptoms with heterogeneous progression courses and treatment responses. The definition of the naturalistic behavioral repertoire of early neurodegenerative manifestations is still elusive, impeding early diagnosis and intervention. Central to this view is the role of artificial intelligence (AI) in reinforcing the depth of phenotypic information, thereby supporting the paradigm shift to precision medicine and personalized healthcare. This suggestion advocates the definition of disease subtypes in a new biomarker-supported nosology framework, yet without empirical consensus on standardization, reliability and interpretability. Although the well-defined neurodegenerative processes, linked to a triad of motor and non-motor preclinical symptoms, are detected by clinical intuition, we undertake an unbiased data-driven approach to identify different patterns of neuropathology distribution based on the naturalistic behavior data inherent to populations in-the-wild. We appraise the role of remote technologies in the definition of digital phenotyping specific to brain-, body- and social-level neurodegenerative subtle symptoms, emphasizing inter- and intra-patient variability powered by deep learning. As such, the present review endeavors to exploit digital technologies and AI to create disease-specific phenotypic explanations, facilitating the understanding of neurodegenerative diseases as "bio-psycho-social" conditions. Not only does this translational effort within explainable digital phenotyping foster the understanding of disease-induced traits, but it also enhances diagnostic and, eventually, treatment personalization.

15.
IEEE J Biomed Health Inform ; 27(2): 912-923, 2023 02.
Article in English | MEDLINE | ID: mdl-36446009

ABSTRACT

The automated recognition of human emotions plays an important role in developing machines with emotional intelligence. Major research efforts are dedicated to the development of emotion recognition methods. However, most of the affective computing models are based on images, audio, videos and brain signals. Literature lacks works that focus on utilizing only peripheral signals for emotion recognition (ER), which can be ideally implemented in daily life settings. Therefore, this paper present a framework for ER on the arousal and valence space, based on using multi-modal peripheral signals. The data used in this work were collected during a debate between two people using wearable devices. The emotions of the participants were rated by multiple raters and converted into classes in correspondence to the arousal and valence space. The use of a dynamic threshold for ratings conversion was investigated. An ER model is proposed that uses a Long Short-Term Memory (LSTM)-based architecture for classification. The model uses heart rate (HR), temperature (T), and electrodermal activity (EDA) signals as its inputs with emotional cues. Additionally, a post-processing prediction mechanism is introduced to enhance the recognition performance. The model is implemented to study the use of individual and different combinations of the peripheral signals, as well as utilizing annotations from different ratings. Additionally, it is employed for classification of valence and arousal in an independent and combined fashion, under subject dependent and independent scenarios. The experimental results have justified the efficient performance of the proposed framework, achieving classification accuracy 96% and 93% for the independent and combined classification scenarios, accordingly. The comparison of the achieved performance against the baseline methods shows the superiority of the proposed framework and the ability to recognize arousal-valance levels with high accuracy from peripheral signals, in real-life scenarios.


Subject(s)
Brain , Emotions , Humans , Emotions/physiology , Communication , Arousal , Heart Rate , Electroencephalography
16.
Sci Rep ; 12(1): 18396, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36319659

ABSTRACT

Artifacts in the Electrocardiogram (ECG) degrade the quality of the recorded signal and are not conducive to heart rate variability (HRV) analysis. The two types of noise most often found in ECG recordings are technical and physiological artifacts. Current preprocessing methods primarily attend to ectopic beats but do not consider technical issues that affect the ECG. A secondary aim of this study was to investigate the effect of increasing increments of artifacts on 24 of the most used HRV measures. A two-step preprocessing approach for denoising HRV is introduced which targets each type of noise separately. First, the technical artifacts in the ECG are eliminated by applying complete ensemble empirical mode decomposition with adaptive noise. The second step removes physiological artifacts from the HRV signal using a combination filter of single dependent rank order mean and an adaptive filtering algorithm. The performance of the two-step pre-processing tool showed a high correlation coefficient of 0.846 and RMSE value of 7.69 × 10-5 for 6% of added ectopic beats and 6 dB Gaussian noise. All HRV measures studied except HF peak and LF peak are significantly affected by both types of noise. Frequency measures of Total power, HF power, and LF power and fragmentation measures; PAS, PIP, and PSS are the most sensitive to both types of noise.


Subject(s)
Electrocardiography , Signal Processing, Computer-Assisted , Heart Rate , Electrocardiography/methods , Artifacts , Normal Distribution , Algorithms
17.
Annu Int Conf IEEE Eng Med Biol Soc ; 2022: 363-366, 2022 07.
Article in English | MEDLINE | ID: mdl-36085853

ABSTRACT

Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with significant morbidity and mortality. Owing to the advances in sensor technology and the emergence of wearable devices that enable daily self-monitoring, ECG signal processing methods for the automatic detection of AF are more pertinent than ever. In this paper, we investigate the use of wavelet higher-order statistics (WHOS) for feature extraction and differentiation between normal sinus rhythm and AF. The proposed approach captures the evolution of the WHOS dynamics and quantifies the changes in the time-varying characteristics of the frequency couplings caused by AF. Results obtained from the statistical analysis of a dataset of 5834 single-lead ECG recordings, reveal 46/50 statistically significant features and provide insight into the complexity of the evolution of the ECG non-linearities during AF.


Subject(s)
Atrial Fibrillation , Wearable Electronic Devices , Atrial Fibrillation/diagnosis , Cardiac Conduction System Disease , Humans , Records , Signal Processing, Computer-Assisted
18.
Front Nutr ; 9: 898031, 2022.
Article in English | MEDLINE | ID: mdl-35879982

ABSTRACT

The ubiquitous nature of smartphone ownership, its broad application and usage, along with its interactive delivery of timely feedback are appealing for health-related behavior change interventions via mobile apps. However, users' perspectives about such apps are vital in better bridging the gap between their design intention and effective practical usage. In this vein, a modified technology acceptance model (mTAM) is proposed here, to explain the relationship between users' perspectives when using an AI-based smartphone app for personalized nutrition and healthy living, namely, PROTEIN, and the mTAM constructs toward behavior change in their nutrition and physical activity habits. In particular, online survey data from 85 users of the PROTEIN app within a period of 2 months were subjected to confirmatory factor analysis (CFA) and regression analysis (RA) to reveal the relationship of the mTAM constructs, i.e., perceived usefulness (PU), perceived ease of use (PEoU), perceived novelty (PN), perceived personalization (PP), usage attitude (UA), and usage intention (UI) with the users' behavior change (BC), as expressed via the acceptance/rejection of six related hypotheses (H1-H6), respectively. The resulted CFA-related parameters, i.e., factor loading (FL) with the related p-value, average variance extracted (AVE), and composite reliability (CR), along with the RA results, have shown that all hypotheses H1-H6 can be accepted (p < 0.001). In particular, it was found that, in all cases, FL > 0.5, CR > 0.7, AVE > 0.5, indicating that the items/constructs within the mTAM framework have good convergent validity. Moreover, the adjusted coefficient of determination (R 2) was found within the range of 0.224-0.732, justifying the positive effect of PU, PEoU, PN, and PP on the UA, that in turn positively affects the UI, leading to the BC. Additionally, using a hierarchical RA, a significant change in the prediction of BC from UA when the UI is used as a mediating variable was identified. The explored mTAM framework provides the means for explaining the role of each construct in the functionality of the PROTEIN app as a supportive tool for the users to improve their healthy living by adopting behavior change in their dietary and physical activity habits. The findings herein offer insights and references for formulating new strategies and policies to improve the collaboration among app designers, developers, behavior scientists, nutritionists, physical activity/exercise physiology experts, and marketing experts for app design/development toward behavior change.

19.
Sci Rep ; 12(1): 7690, 2022 05 11.
Article in English | MEDLINE | ID: mdl-35546606

ABSTRACT

The unmet timely diagnosis requirements, that take place years after substantial neural loss and neuroperturbations in neuropsychiatric disorders, affirm the dire need for biomarkers with proven efficacy. In Parkinson's disease (PD), Mild Cognitive impairment (MCI), Alzheimers disease (AD) and psychiatric disorders, it is difficult to detect early symptoms given their mild nature. We hypothesize that employing fine motor patterns, derived from natural interactions with keyboards, also knwon as keystroke dynamics, could translate classic finger dexterity tests from clinics to populations in-the-wild for timely diagnosis, yet, further evidence is required to prove this efficiency. We have searched PubMED, Medline, IEEEXplore, EBSCO and Web of Science for eligible diagnostic accuracy studies employing keystroke dynamics as an index test for the detection of neuropsychiatric disorders as the main target condition. We evaluated the diagnostic performance of keystroke dynamics across 41 studies published between 2014 and March 2022, comprising 3791 PD patients, 254 MCI patients, and 374 psychiatric disease patients. Of these, 25 studies were included in univariate random-effect meta-analysis models for diagnostic performance assessment. Pooled sensitivity and specificity are 0.86 (95% Confidence Interval (CI) 0.82-0.90, I2 = 79.49%) and 0.83 (CI 0.79-0.87, I2 = 83.45%) for PD, 0.83 (95% CI 0.65-1.00, I2 = 79.10%) and 0.87 (95% CI 0.80-0.93, I2 = 0%) for psychomotor impairment, and 0.85 (95% CI 0.74-0.96, I2 = 50.39%) and 0.82 (95% CI 0.70-0.94, I2 = 87.73%) for MCI and early AD, respectively. Our subgroup analyses conveyed the diagnosis efficiency of keystroke dynamics for naturalistic self-reported data, and the promising performance of multimodal analysis of naturalistic behavioral data and deep learning methods in detecting disease-induced phenotypes. The meta-regression models showed the increase in diagnostic accuracy and fine motor impairment severity index with age and disease duration for PD and MCI. The risk of bias, based on the QUADAS-2 tool, is deemed low to moderate and overall, we rated the quality of evidence to be moderate. We conveyed the feasibility of keystroke dynamics as digital biomarkers for fine motor decline in naturalistic environments. Future work to evaluate their performance for longitudinal disease monitoring and therapeutic implications is yet to be performed. We eventually propose a partnership strategy based on a "co-creation" approach that stems from mechanistic explanations of patients' characteristics derived from data obtained in-clinics and under ecologically valid settings. The protocol of this systematic review and meta-analysis is registered in PROSPERO; identifier CRD42021278707. The presented work is supported by the KU-KAIST joint research center.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Parkinson Disease , Alzheimer Disease/diagnosis , Biomarkers , Cognitive Dysfunction/diagnosis , Fingers , Humans , Motor Skills , Sensitivity and Specificity
20.
Front Psychol ; 13: 857249, 2022.
Article in English | MEDLINE | ID: mdl-35369199

ABSTRACT

Neurodegenerative Parkinson's Disease (PD) is one of the common incurable diseases among the elderly. Clinical assessments are characterized as standardized means for PD diagnosis. However, relying on medical evaluation of a patient's status can be subjective to physicians' experience, making the assessment process susceptible to human errors. The use of ICT-based tools for capturing the status of patients with PD can provide more objective and quantitative metrics. In this vein, the Personalized Serious Game Suite (PGS) and intelligent Motor Assessment Tests (iMAT), produced within the i-PROGNOSIS European project (www.i-prognosis.eu), are explored in the current study. More specifically, data from 27 patients with PD at Stage 1 (9) and Stage 3 (18) produced from their interaction with PGS/iMAT are analyzed. Five feature vector (FV) scenarios are set, including features from PGS or iMAT scores or their combination, after also taking into consideration the age of patients with PD. These FVs are fed into three machine learning classifiers, i.e., K-Nearest Neighbor (KNN), Support Vector Machines (SVM), and Random Forest (RF), to infer the stage of each patient with PD. A Leave-One-Out Cross-Validation (LOOCV) method is adopted for testing the classification performance. The experimental results show that a high (>90%) classification accuracy is achieved from both data sources (PGS/iMAT), justifying the effectiveness of PGS/iMAT to efficiently reflect the motor skill status of patients with PD and further potentiating PGS/iMAT enhancement with a machine learning a part to infer for the stage of patients with PD. Clearly, this integrated approach provides new opportunities for remote monitoring of the stage of patients with PD, contributing to a more efficient organization and set up of personalized interventions.

SELECTION OF CITATIONS
SEARCH DETAIL
...