Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(6)2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38535630

ABSTRACT

Bimetallic colloidal CoPt nanoalloys with low platinum content were successfully synthesized following a modified polyol approach. Powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), and transmission electron microscopy (TEM) studies were performed to estimate the crystal structure, morphology, and surface functionalization of the colloids, respectively, while the room-temperature magnetic properties were measured using a vibrating sample magnetometer (VSM). The particles exhibit excellent uniformity, with a narrow size distribution, and display strong room-temperature hysteretic ferromagnetic behavior even in the as-made form. Upon annealing at elevated temperatures, progressive formation and co-existence of exchange coupled, of both chemically ordered and disordered phases significantly enhanced the room-temperature coercivity.

3.
Nanomaterials (Basel) ; 10(10)2020 Oct 09.
Article in English | MEDLINE | ID: mdl-33050215

ABSTRACT

Ni-Cu nanoparticles have been synthesized by reducing Ni and Cu from metal precursors using a sol-gel route followed by annealing at 300 °C for 1, 2, 3, 6, 8, and 10 h for controlled self-regulating magnetic hyperthermia applications. Particle morphology and crystal structure revealed spherical nanoparticles with a cubic structure and an average size of 50, 60, 53, 87, and 87 nm for as-made and annealed samples at 300 °C for 1, 3, 6, and 10 h, respectively. Moreover, hysteresis loops indicated ferromagnetic behavior with saturation magnetization (Ms) ranging from 13-20 emu/g at 300 K. Additionally, Zero-filed cooled and field cooled (ZFC-FC) curves revealed that each sample contains superparamagnetic nanoparticles with a blocking temperature (TB) of 196-260 K. Their potential use for magnetic hyperthermia was tested under the therapeutic limits of an alternating magnetic field. The samples exhibited a heating rate ranging from 0.1 to 1.7 °C/min and a significant dissipated heating power measured as a specific absorption rate (SAR) of 6-80 W/g. The heating curves saturated after reaching the Curie temperature (Tc), ranging from 30-61 °C within the therapeutic temperature limit. An in vitro cytotoxicity test of these Ni-Cu samples in biological tissues was performed via exposing human breast cancer MDA-MB231 cells to a gradient of concentrations of the sample with 53 nm particles (annealed at 300 °C for 3 h) and reviewing their cytotoxic effects. For low concentrations, this sample showed no toxic effects to the cells, revealing its biocompatibility to be used in the future for in vitro/in vivo magnetic hyperthermia treatment of cancer.

4.
Phys Rev Lett ; 124(5): 057201, 2020 Feb 07.
Article in English | MEDLINE | ID: mdl-32083901

ABSTRACT

Magnets with chiral crystal structures and helical spin structures have recently attracted much attention as potential spin-electronics materials, but their relatively low magnetic-ordering temperatures are a disadvantage. While cobalt has long been recognized as an element that promotes high-temperature magnetic ordering, most Co-rich alloys are achiral and exhibit collinear rather than helimagnetic order. Crystallographically, the B20-ordered compound CoSi is an exception due to its chiral structure, but it does not exhibit any kind of magnetic order. Here, we use nonequilibrium processing to produce B20-ordered Co_{1+x}Si_{1-x} with a maximum Co solubility of x=0.043. Above a critical excess-Co content (x_{c}=0.028), the alloys are magnetically ordered, and for x=0.043, a critical temperature T_{c}=328 K is obtained, the highest among all B20-type magnets. The crystal structure of the alloy supports spin spirals caused by Dzyaloshinskii-Moriya interactions, and from magnetic measurements we estimate that the spirals have a periodicity of about 17 nm. Our density-functional calculations explain the combination of high magnetic-ordering temperature and short periodicity in terms of a quantum phase transition where excess-cobalt spins are coupled through the host matrix.

5.
RSC Adv ; 10(48): 28958-28964, 2020 Aug 03.
Article in English | MEDLINE | ID: mdl-35520054

ABSTRACT

In this paper, we report a one-pot chemical synthesis technique for the preparation of iron and iron-carbide nanoparticles. Mössbauer spectroscopy, X-ray diffraction and magnetometry were used as the main tools to identify the different phases of Fe-C present. The influence of experimental parameters on the structural and compositional properties of nanoparticles was investigated in detail. These particles show ferromagnetic behavior with room temperature coercivity higher than 300 Oe. The X-ray diffraction was complemented by Mössbauer spectroscopy and thermo-magnetic analysis. Remarkably, the carbon content in iron-carbide nanoparticles (carbon rich or carbon poor iron-carbides) can be modulated simply by varying the experimental conditions, like the reaction time, temperature and iron precursor concentration. Magnetic properties can be tailored based upon crystallographic structure and particles composition.

6.
Nanomaterials (Basel) ; 9(10)2019 Sep 25.
Article in English | MEDLINE | ID: mdl-31557827

ABSTRACT

The structural and magnetic properties of Co2Ge nanoparticles (NPs) prepared by the cluster-beam deposition (CBD) technique have been investigated. As-made particles with an average size of 5.5 nm exhibit a mixture of hexagonal and orthorhombic crystal structures. Thermomagnetic measurements showed that the as-made particles are superparamagnetic at room temperature with a blocking temperature (TB) of 20 K. When the particles are annealed at 823 K for 12 h, their size is increased to 13 nm and they develop a new orthorhombic crystal structure, with a Curie temperature (TC) of 815 K. This is drastically different from bulk, which are ferromagnetic at cryogenic temperatures only. X-ray diffraction (XRD) measurements suggest the formation of a new Co-rich orthorhombic phase (OP) with slightly increased c/a ratio in the annealed particles and this is believed to be the reason for the drastic change in their magnetic properties.

7.
Nanoscale Adv ; 1(11): 4476-4480, 2019 Nov 05.
Article in English | MEDLINE | ID: mdl-36134414

ABSTRACT

Iron carbide nanoplatelets with an orthorhombic Fe3C structure were synthesized following a simple liquid chemical approach. The formation of the carbide phases was shown to depend on the presence of a long chain diol and the reaction temperature. Confirmation of the iron carbide phases and structural characterization was made by X-ray diffraction (XRD) and Mössbauer spectroscopy. Particle morphology was characterized by transmission electron microscopy (TEM) and HR-TEM and the magnetic properties were measured with magnetometry (VSM). The sample with the Fe3C phase shows a ferromagnetic behavior with a magnetization of 139 emu g-1 under a 30 kOe applied field. The simple methodology presented here for producing iron carbide nanoplatelets has promising application in the biomedical and catalyst industries.

8.
Nanomaterials (Basel) ; 8(4)2018 Apr 15.
Article in English | MEDLINE | ID: mdl-29662035

ABSTRACT

In this work, we investigated the magnetic and structural properties of isolated Mn5Ge3 nanoparticles prepared by the cluster-beam deposition technique. Particles with sizes between 7.2 and 12.6 nm were produced by varying the argon pressure and power in the cluster gun. X-ray diffraction (XRD)and selected area diffraction (SAD) measurements show that the nanoparticles crystallize in the hexagonal Mn5Si3-type crystal structure, which is also the structure of bulk Mn5Ge3. The temperature dependence of the magnetization shows that the as-made particles are ferromagnetic at room temperature and have slightly different Curie temperatures. Hysteresis-loop measurements show that the saturation magnetization of the nanoparticles increases significantly with particle size, varying from 31 kA/m to 172 kA/m when the particle size increases from 7.2 to 12.6 nm. The magnetocrystalline anisotropy constant K at 50 K, determined by fitting the high-field magnetization data to the law of approach to saturation, also increases with particle size, from 0.4 × 105 J/m³ to 2.9 × 105 J/m³ for the respective sizes. This trend is mirrored by the coercivity at 50 K, which increases from 0.04 T to 0.13 T. A possible explanation for the magnetization trend is a radial Ge concentration gradient.

9.
Nanoscale ; 10(20): 9504-9508, 2018 May 24.
Article in English | MEDLINE | ID: mdl-29498385

ABSTRACT

Bulk magnetic materials with the noncentrosymmetric cubic B20 structure are fascinating due to skyrmion spin structures associated with Dzyaloshinskii-Moriya interactions, but the size of skyrmions are generally larger than 50 nm. The control of such spin structures in the 10 nm size ranges is essential to explore them for spintronics, ultra-high-density magnetic recording, and other applications. In this study, we have fabricated MnSi nanoparticles with average sizes of 9.7, 13.1 and 17.7 nm and investigated their structural and magnetic properties. X-ray diffraction and transmission electron microscope studies show that the MnSi nanoparticles crystallize in the cubic B20 structure. Field-dependent dc susceptibility data of the MnSi samples with average particle sizes of 17.7 and 13.1 nm show anomalies in limited field (about 25-400 Oe) and temperature (25 K-43 K) ranges. These features are similar to the signature of the skyrmion-like spin structures observed below the Curie temperature of MnSi. Our results also show that this anomalous behavior is size-dependent and suppressed in the smallest nanoparticles (9.7 nm), and this suppression is interpreted as a confinement effect that leads to a truncation of the skyrmion structure.

10.
Nano Lett ; 16(2): 1132-7, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26756914

ABSTRACT

Mn-based silicides are fascinating due to their exotic spin textures and unique crystal structures, but the low magnetic ordering temperatures and/or small magnetic moments of bulk alloys are major impediments to their use in practical applications. In sharp contrast to bulk Mn5Si3, which is paramagnetic at room temperature and exhibits low-temperature antiferromagnetic ordering, we show ferromagnetic ordering in Mn5Si3 nanoparticles with a high Curie temperature (Tc ≈ 590 K). The Mn5Si3 nanoparticles have an average size of 8.6 nm and also exhibit large saturation magnetic polarizations (Js = 10.1 kG at 300 K and 12.4 kG at 3 K) and appreciable magnetocrystalline anisotropy constants (K1 = 6.2 Mergs/cm(3) at 300 K and at 12.8 Mergs/cm(3) at 3 K). The drastic change of the magnetic ordering and properties in the nanoparticles are attributed to low-dimensional and quantum-confinement effects, evident from first-principle density-functional-theory calculations.

11.
Nanoscale ; 5(17): 7942-52, 2013 Sep 07.
Article in English | MEDLINE | ID: mdl-23857290

ABSTRACT

We report a novel synthesis approach for the growth of core/shell FeO/Fe3O4 nanoparticles with controlled shape and size. FeO particles were partially oxidized to form core/shell FeO/Fe3O4 structures, as evidenced from transmission electron microscopy, X-ray diffraction, and magnetometry analysis. We find that the molar ratios and concentrations of surfactants are the key parameters in controlling the particle size. The particles can grow in either isotropic or anisotropic shapes, depending upon a chemical reaction scheme that is controlled kinetically or thermodynamically. The competitive growth rates of {111} and {100} facets can be used to tune the final shape of nanoparticles to spherical, cubic, octahedral, octopod, and cuboctahedral geometries. FeO particles can also be oxidized chemically or thermally to form Fe3O4 nanoparticles. By following the same synthesis technique, it is possible to synthesize rods and triangles of Fe3O4 by introducing twinnings and defects into the crystal structure of the seed. The thermally activated first-order Verwey transition at ~120 K has been observed in all the synthesized FeO/Fe3O4 nanoparticles, indicating its independence from the particle shape. These core/shell nanoparticles exhibit a strong shift in field-cooled hysteresis loops accompanied by an increase in coercivity (the so-called exchange bias effect), but the low field-switching behavior appears to vary with the particle shape.

12.
Nanotechnology ; 22(26): 265605, 2011 Jul 01.
Article in English | MEDLINE | ID: mdl-21576787

ABSTRACT

In this work, we report a detailed study of the formation of hollow nanostructures in iron oxides. Core/shell Fe/Fe-oxide nanoparticles were synthesized by thermal decomposition of Fe(CO)(5) at high temperature. It was found that 8 nm is the critical size above which the particles have a core/shell morphology, whereas below this size the particles exhibit a hollow morphology. Annealing the core/shell particles under air also leads to the formation of hollow spheres with a significant increase in the average particle size. In the case of the thermally activated Kirkendall process, the particles do not fully transform into hollow structures but many irregular shaped voids exist inside each particle. The 8 nm hollow particles are superparamagnetic at room temperature with a blocking temperature of 70 K whereas the core/shell particles are ferromagnetic.

13.
Nano Lett ; 11(4): 1747-52, 2011 Apr 13.
Article in English | MEDLINE | ID: mdl-21361372

ABSTRACT

Rare-earth transition-metal (R-TM) alloys show superior permanent magnetic properties in the bulk, but the synthesis and application of R-TM nanoparticles remains a challenge due to the requirement of high-temperature annealing above about 800 °C for alloy formation and subsequent crystalline ordering. Here we report a single-step method to produce highly ordered R-TM nanoparticles such as YCo(5) and Y(2)Co(17), without high-temperature thermal annealing by employing a cluster-deposition system and investigate their structural and magnetic properties. The direct ordering is highly desirable to create and assemble R-TM nanoparticle building blocks for future permanent-magnet and other significant applications.


Subject(s)
Magnetics/instrumentation , Metals, Rare Earth/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Equipment Design , Equipment Failure Analysis , Materials Testing , Particle Size , Transition Elements/chemistry
14.
Nanotechnology ; 21(29): 295705, 2010 Jul 23.
Article in English | MEDLINE | ID: mdl-20601763

ABSTRACT

High energy ball milling has been shown to be a promising method for large-scale fabrication of rare earth-transition metal nanoparticles. In this work, magnetically hard Nd-Fe-B nanopowders with a coercivity in the range of 1.2-4 kOe have been produced by surfactant-assisted ball milling of nanocrystalline precursor alloys. The nanopowders consisted of Nd(2)Fe(14)B flakes with a thickness below 100 nm and an aspect ratio as high as 10(2)-10(3) and anisotropic square nanoparticles with a size of 11 nm. Both the nanoparticles and nanoflakes showed a strong [001] out-of-plane texture. The nanoparticles showed a spin reorientation temperature which is lower (117 K) than the bulk value (135 K). The successful fabrication of Nd-Fe-B nano-thin flakes and anisotropic nanoparticles provides hope for the development of nanocomposite permanent magnets with an enhanced energy product.

15.
J Mater Chem ; 20(26): 5418-5428, 2010 Jan 01.
Article in English | MEDLINE | ID: mdl-20582149

ABSTRACT

Magnetic nanocomposites containing iron oxide (maghemite) nanoparticles, well embedded in a synthetic clay matrix (laponite) were prepared by a new one step chemical route and characterized by TEM, XRD, magnetization measurements, Mössbauer spectroscopy, DLS, and MRI measurements. The synthetic procedure leads to non-stoichiometric γ-Fe(2)O(3) with a controllable content in the nanocomposite. Magnetic nanoparticles incorporated in the diamagnetic clay matrix exhibit a mean diameter of 13 nm, superparamagnetic behavior with a high saturation magnetization achievable at low applied magnetic fields. In-field Mössbauer spectra and ZFC/FC magnetization curves reveal a perfect ferrimagnetic ordering within nanoparticles with negligible spin frustration and interparticle interactions due to the complete coating of maghemite surfaces by the nanocrystalline laponite matrix. Magnetic iron oxide nanoparticles embedded in laponite matrix exhibit strong T(2) weighted MRI contrast. The maghemite/laponite composite particles have 200 nm hydrodynamic diameter and form very stable hydrosols and/or hydrogels depending on their concentration in water.

16.
Nanotechnology ; 20(48): 485602, 2009 Dec 02.
Article in English | MEDLINE | ID: mdl-19880977

ABSTRACT

Monodisperse Fe-Pt nanoparticles have been prepared by thermal decomposition of iron pentacarbonyl [Fe(CO)5] and reduction of platinum acetylacetonate [Pt(acac)2] with dibenzyl ether in the presence of oleic acid and oleyl amine. The particle composition was adjusted by changing the Fe(CO)5/Pt(acac)2 molar ratio while fixing the Pt(acac)2 amount. The size of FePt nanoparticles was tuned by controlling the injection temperature of the iron precursor. The low injection temperature of precursors and the usage of surfactants as a reaction solvent, together with a slow heating to a low refluxing temperature, were found to be the key parameters for the formation of cubic nanoparticles. Nanorods were formed by simply adjusting the injection time of the surfactants. The as-made nanoparticles had a low coercivity, which was increased to 7 kOe when annealed at 800 degrees C for 1 h.

18.
J Am Chem Soc ; 126(22): 6874-5, 2004 Jun 09.
Article in English | MEDLINE | ID: mdl-15174850

ABSTRACT

We report a low-temperature (150 degrees C) and simple synthesis of quasi-monodispersed and uniform hexagonal (Wurtzite) ZnS nanocrystals in ethylene glycol medium. The samples structures were characterized with X-ray diffraction technique and transmission electron microscopy. It is believed that ethylene glycol medium plays a key role in forming hexagonal ZnS which is a stable phase at high temperatures.

SELECTION OF CITATIONS
SEARCH DETAIL
...