Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Inorg Chem ; 59(17): 12536-12544, 2020 Sep 08.
Article in English | MEDLINE | ID: mdl-32805989

ABSTRACT

The reaction of ultrathin layers of Mo and Ti with Se was investigated, and significantly different reaction pathways were found. However, in both systems postdeposition annealing results in smooth dichalcogenide films with specific thicknesses determined by the precursor. X-ray diffraction (XRD) patterns of as-deposited Mo|Se films around a 1:2 ratio of Mo to Se contain weak, broad reflections from small and isolated MoSe2 crystallites that nucleated during deposition and a sharper intensity maximum resulting from the composition modulation created from the alternating deposition of Mo and Se layers. In contrast, as-deposited Ti|Se films around a 1:2 ratio of Ti to Se contain narrow and intense 00l reflections from TiSe2 crystallites and do not contain a Bragg reflection from the sequence of deposited Ti|Se layers. The as-deposited TiSe2 crystallites have a larger c-axis lattice parameter than was previously reported for TiSe2, however, which suggests a poor vertical interlayer registry and/or high defect densities including interstitial atoms. In-plane XRD patterns show the nucleation of both TiSe2 and Ti2Se during deposition, with the Ti2Se at the substrate. For both systems, annealing the precursors decreases the peak width and increases the intensity of reflections from crystalline TiSe2 and MoSe2. Optimized films consist of a single phase after the annealing and show clear Laue oscillations in the specular XRD patterns, which can only occur if a majority of the diffracting crystallites in the film consist of the same number of unit cells. The highest quality films was obtained when an excess of ∼10% Se was deposited in the precursor, which presumably acts as a flux to facilitate diffusion of metal atoms to crystallite growth fronts and compensates for Se loss to the open system during annealing.

2.
Nanotechnology ; 30(28): 285401, 2019 Jul 12.
Article in English | MEDLINE | ID: mdl-30645979

ABSTRACT

Films containing 8, 16, 24, 32 and 64 MoSe2 layers were synthesized using the modulated elemental reactants method. X-ray reflectivity patterns showed that the annealed films were the targeted number of MoSe2 layers thick with atomically smooth interfaces. In-plane x-ray diffraction (XRD) scans contained only hk0 reflections for crystalline MoSe2 monolayers. Specular XRD patterns contained only 00l reflections, also indicating that the hk0 plane of the MoSe2 layers are parallel to the substrate. Both XRD and electron microscopy techniques indicated that the hk0 planes are rotationally disordered with respect to one another, with all orientations equally probable for large areas. The rotational disorder between MoSe2 layers is present even when analyzed spots are within 10 nm of one another. Cross-plane thermal conductivities of 0.07-0.09 W m-1 K-1 were measured by time domain thermoreflectance, with the thinnest films exhibiting the lowest conductivity. The structural analysis suggests that the ultralow thermal conductivity is a consequence of rotational disorder, which increases the separation between MoSe2 layers. The bonding environment of the Se atoms also becomes significantly distorted from C 3v symmetry due to the rotational disorder between layers. This structural disorder efficiently reduces the group velocity of the transverse phonon modes but not that of longitudinal modes. Since rotational disorder between adjacent layers in heterostructures is expected if the constituents have incommensurate lattices, this study indicates that these heterostructures will have very low cross-plane thermal conductivity.

3.
ACS Nano ; 10(10): 9489-9499, 2016 Oct 25.
Article in English | MEDLINE | ID: mdl-27673390

ABSTRACT

(BiSe)1+δ(NbSe2)n heterostructures with n = 1-4 were synthesized using modulated elemental reactants. The BiSe bilayer structure changed from a rectangular basal plane with n = 1 to a square basal plane for n = 2-4. The BiSe in-plane structure was also influenced by small changes in the structure of the precursor, without significantly changing the out-of-plane diffraction pattern or value of the misfit parameter, δ. Density functional theory calculations on isolated BiSe bilayers showed that its lattice is very flexible, which may explain its readiness to adjust shape and size depending on the environment. Correlated with the changes in the BiSe basal plane structure, analysis of scanning transmission electron microscope images revealed that the occurrence of antiphase boundaries, found throughout the n = 1 compound, is dramatically reduced for the n = 2-4 compounds. X-ray photoelectron spectroscopy measurements showed that the Bi 5d3/2, 5d5/2 doublet peaks narrowed toward higher binding energies as n increased from 1 to 2, also consistent with a reduction in the number of antiphase boundaries. Temperature-dependent electrical resistivity and Hall coefficient measurements of nominally stoichiometric samples in conjunction with structural refinements and XPS data suggest a constant amount of interlayer charge transfer independent of n. Constant interlayer charge transfer is surprising given the changes in the BiSe in-plane structure. The structural flexibility of the BiSe layer may be useful in designing multiple constituent heterostructures as an interlayer between structurally dissimilar constituents.

SELECTION OF CITATIONS
SEARCH DETAIL
...