Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Am J Hum Genet ; 109(11): 1960-1973, 2022 11 03.
Article in English | MEDLINE | ID: mdl-36332611

ABSTRACT

Sharing genomic variant interpretations across laboratories promotes consistency in variant assertions. A landscape analysis of Australian clinical genetic-testing laboratories in 2017 identified that, despite the national-accreditation-body recommendations encouraging laboratories to submit genotypic data to clinical databases, fewer than 300 variants had been shared to the ClinVar public database. Consultations with Australian laboratories identified resource constraints limiting routine application of manual processes, consent issues, and differences in interpretation systems as barriers to sharing. This information was used to define key needs and solutions required to enable national sharing of variant interpretations. The Shariant platform, using both the GRCh37 and GRCh38 genome builds, was developed to enable ongoing sharing of variant interpretations and associated evidence between Australian clinical genetic-testing laboratories. Where possible, two-way automated sharing was implemented so that disruption to laboratory workflows would be minimized. Terms of use were developed through consultation and currently restrict access to Australian clinical genetic-testing laboratories. Shariant was designed to store and compare structured evidence, to promote and record resolution of inter-laboratory classification discrepancies, and to streamline the submission of variant assertions to ClinVar. As of December 2021, more than 14,000 largely prospectively curated variant records from 11 participating laboratories have been shared. Discrepant classifications have been identified for 11% (28/260) of variants submitted by more than one laboratory. We have demonstrated that co-design with clinical laboratories is vital to developing and implementing a national variant-interpretation sharing effort. This approach has improved inter-laboratory concordance and enabled opportunities to standardize interpretation practices.


Subject(s)
Databases, Genetic , Laboratories , Humans , Genetic Variation , Australia , Genetic Testing
2.
Hum Mutat ; 43(12): 2170-2186, 2022 12.
Article in English | MEDLINE | ID: mdl-36217948

ABSTRACT

The standardization of variant curation criteria is essential for accurate interpretation of genetic results and clinical care of patients. The variant curation guidelines developed by the American College of Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology (AMP) in 2015 are widely used but are not gene specific. To address this issue, the Clinical Genome Resource (ClinGen) Variant Curation Expert Panels (VCEP) have been tasked with developing gene-specific variant curation guidelines. The Glaucoma VCEP was created to develop rule specifications for genes associated with primary glaucoma, including myocilin (MYOC), the most common cause of Mendelian glaucoma. Of the 28 ACMG/AMP criteria, the Glaucoma VCEP adapted 15 rules to MYOC and determined 13 rules not applicable. Key specifications included determining minor allele frequency thresholds, developing an approach to counting probands and segregations, and reviewing functional assays. The rules were piloted on 81 variants and led to a change in classification in 40% of those that were classified in ClinVar, with functional evidence influencing the classification of 18 variants. The standardized variant curation guidelines for MYOC provide a framework for the consistent application of the rules between laboratories, to improve MYOC genetic testing in the management of glaucoma.


Subject(s)
Genome, Human , Glaucoma , Humans , Genetic Testing/methods , Genetic Variation , Glaucoma/diagnosis , Glaucoma/genetics , Pathology, Molecular , United States
3.
Mol Genet Genomic Med ; 10(10): e2023, 2022 10.
Article in English | MEDLINE | ID: mdl-35985662

ABSTRACT

Corneal dystrophies describe a clinically and genetically heterogeneous group of inherited disorders. The International Classification of Corneal Dystrophies (IC3D) lists 22 types of corneal dystrophy, 17 of which have been demonstrated to result from pathogenic variants in 19 identified genes. In this study, we investigated the diagnostic yield of genetic testing in a well-characterised cohort of 58 individuals from 44 families with different types of corneal dystrophy. Individuals diagnosed solely with Fuchs endothelial corneal dystrophy were excluded. Clinical details were obtained from the treating ophthalmologist. Participants and their family members were tested using a gene candidate and exome sequencing approach. We identified a likely molecular diagnosis in 70.5% families (31/44). The detection rate was significantly higher among probands with a family history of corneal dystrophy (15/16, 93.8%) than those without (16/28, 57.1%, p = .015), and among those who had undergone corneal graft surgery (9/9, 100.0%) compared to those who had not (22/35, 62.9%, p = .041). We identified eight novel variants in five genes and identified five families with syndromes associated with corneal dystrophies. Our findings highlight the genetic heterogeneity of corneal dystrophies and the clinical utility of genetic testing in reaching an accurate clinical diagnosis.


Subject(s)
Corneal Dystrophies, Hereditary , Australia , Cohort Studies , Corneal Dystrophies, Hereditary/diagnosis , Corneal Dystrophies, Hereditary/genetics , Corneal Dystrophies, Hereditary/pathology , Genetic Testing , Humans
4.
Nat Med ; 23(3): 386-395, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28134926

ABSTRACT

Developmental tumors in children and young adults carry few genetic alterations, yet they have diverse clinical presentation. Focusing on Ewing sarcoma, we sought to establish the prevalence and characteristics of epigenetic heterogeneity in genetically homogeneous cancers. We performed genome-scale DNA methylation sequencing for a large cohort of Ewing sarcoma tumors and analyzed epigenetic heterogeneity on three levels: between cancers, between tumors, and within tumors. We observed consistent DNA hypomethylation at enhancers regulated by the disease-defining EWS-FLI1 fusion protein, thus establishing epigenomic enhancer reprogramming as a ubiquitous and characteristic feature of Ewing sarcoma. DNA methylation differences between tumors identified a continuous disease spectrum underlying Ewing sarcoma, which reflected the strength of an EWS-FLI1 regulatory signature and a continuum between mesenchymal and stem cell signatures. There was substantial epigenetic heterogeneity within tumors, particularly in patients with metastatic disease. In summary, our study provides a comprehensive assessment of epigenetic heterogeneity in Ewing sarcoma and thereby highlights the importance of considering nongenetic aspects of tumor heterogeneity in the context of cancer biology and personalized medicine.


Subject(s)
Bone Neoplasms/genetics , DNA Methylation/genetics , Gene Expression Regulation, Neoplastic , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Protein c-fli-1/genetics , RNA-Binding Protein EWS/genetics , Sarcoma, Ewing/genetics , Adolescent , Adult , Cell Line, Tumor , Child , Child, Preschool , Epigenesis, Genetic , Female , Genetic Heterogeneity , Humans , Male , Middle Aged , Promoter Regions, Genetic/genetics , Young Adult
5.
Cell Rep ; 13(11): 2621-2633, 2015 Dec 22.
Article in English | MEDLINE | ID: mdl-26673328

ABSTRACT

Genome-wide DNA methylation mapping uncovers epigenetic changes associated with animal development, environmental adaptation, and species evolution. To address the lack of high-throughput methods for DNA methylation analysis in non-model organisms, we developed an integrated approach for studying DNA methylation differences independent of a reference genome. Experimentally, our method relies on an optimized 96-well protocol for reduced representation bisulfite sequencing (RRBS), which we have validated in nine species (human, mouse, rat, cow, dog, chicken, carp, sea bass, and zebrafish). Bioinformatically, we developed the RefFreeDMA software to deduce ad hoc genomes directly from RRBS reads and to pinpoint differentially methylated regions between samples or groups of individuals (http://RefFreeDMA.computational-epigenetics.org). The identified regions are interpreted using motif enrichment analysis and/or cross-mapping to annotated genomes. We validated our method by reference-free analysis of cell-type-specific DNA methylation in the blood of human, cow, and carp. In summary, we present a cost-effective method for epigenome analysis in ecology and evolution, which enables epigenome-wide association studies in natural populations and species without a reference genome.


Subject(s)
DNA Methylation , DNA/metabolism , Genome , Genomics/methods , Animals , Blood Cells/metabolism , Carps , Cattle , Chromosome Mapping , CpG Islands , DNA/chemistry , High-Throughput Nucleotide Sequencing , Humans , Leukocytes/metabolism , Sequence Analysis, DNA , Software
6.
Nat Genet ; 45(7): 730-8, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23749187

ABSTRACT

Ankylosing spondylitis is a common, highly heritable inflammatory arthritis affecting primarily the spine and pelvis. In addition to HLA-B*27 alleles, 12 loci have previously been identified that are associated with ankylosing spondylitis in populations of European ancestry, and 2 associated loci have been identified in Asians. In this study, we used the Illumina Immunochip microarray to perform a case-control association study involving 10,619 individuals with ankylosing spondylitis (cases) and 15,145 controls. We identified 13 new risk loci and 12 additional ankylosing spondylitis-associated haplotypes at 11 loci. Two ankylosing spondylitis-associated regions have now been identified encoding four aminopeptidases that are involved in peptide processing before major histocompatibility complex (MHC) class I presentation. Protective variants at two of these loci are associated both with reduced aminopeptidase function and with MHC class I cell surface expression.


Subject(s)
Genetic Loci , Genetic Predisposition to Disease/genetics , Immune System Phenomena/genetics , Polymorphism, Single Nucleotide , Spondylitis, Ankylosing/genetics , Alleles , Case-Control Studies , DNA Mutational Analysis/methods , Genetic Loci/immunology , Genetic Predisposition to Disease/ethnology , Genome-Wide Association Study/methods , Genotype , Genotyping Techniques/methods , HLA-B27 Antigen/genetics , High-Throughput Nucleotide Sequencing , Humans , Risk Factors , Spondylitis, Ankylosing/ethnology , Spondylitis, Ankylosing/immunology
7.
Hum Mol Genet ; 22(11): 2283-92, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23406874

ABSTRACT

Multiple sclerosis (MS) is a common chronic inflammatory disease of the central nervous system. Susceptibility to the disease is affected by both environmental and genetic factors. Genetic factors include haplotypes in the histocompatibility complex (MHC) and over 50 non-MHC loci reported by genome-wide association studies. Amongst these, we previously reported polymorphisms in chromosome 12q13-14 with a protective effect in individuals of European descent. This locus spans 288 kb and contains 17 genes, including several candidate genes which have potentially significant pathogenic and therapeutic implications. In this study, we aimed to fine-map this locus. We have implemented a two-phase study: a variant discovery phase where we have used next-generation sequencing and two target-enrichment strategies [long-range polymerase chain reaction (PCR) and Nimblegen's solution phase hybridization capture] in pools of 25 samples; and a genotyping phase where we genotyped 712 variants in 3577 healthy controls and 3269 MS patients. This study confirmed the association (rs2069502, P = 9.9 × 10(-11), OR = 0.787) and narrowed down the locus of association to an 86.5 kb region. Although the study was unable to pinpoint the key-associated variant, we have identified a 42 (genotyped and imputed) single-nucleotide polymorphism haplotype block likely to harbour the causal variant. No evidence of association at previously reported low-frequency variants in CYP27B1 was observed. As part of the study we compared variant discovery performance using two target-enrichment strategies. We concluded that our pools enriched with Nimblegen's solution phase hybridization capture had better sensitivity to detect true variants than the pools enriched with long-range PCR, whilst specificity was better in the long-range PCR-enriched pools compared with solution phase hybridization capture enriched pools; this result has important implications for the design of future fine-mapping studies.


Subject(s)
Chromosome Mapping , Chromosomes, Human, Pair 12 , Genetic Loci , Multiple Sclerosis/genetics , Adult , Case-Control Studies , Female , Genome-Wide Association Study , Genotype , Humans , Linkage Disequilibrium , Male , Middle Aged , Mutation , Polymorphism, Single Nucleotide , Sequence Analysis, DNA , Young Adult
8.
PLoS Genet ; 7(4): e1001372, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21533022

ABSTRACT

Osteoporotic fracture is a major cause of morbidity and mortality worldwide. Low bone mineral density (BMD) is a major predisposing factor to fracture and is known to be highly heritable. Site-, gender-, and age-specific genetic effects on BMD are thought to be significant, but have largely not been considered in the design of genome-wide association studies (GWAS) of BMD to date. We report here a GWAS using a novel study design focusing on women of a specific age (postmenopausal women, age 55-85 years), with either extreme high or low hip BMD (age- and gender-adjusted BMD z-scores of +1.5 to +4.0, n = 1055, or -4.0 to -1.5, n = 900), with replication in cohorts of women drawn from the general population (n = 20,898). The study replicates 21 of 26 known BMD-associated genes. Additionally, we report suggestive association of a further six new genetic associations in or around the genes CLCN7, GALNT3, IBSP, LTBP3, RSPO3, and SOX4, with replication in two independent datasets. A novel mouse model with a loss-of-function mutation in GALNT3 is also reported, which has high bone mass, supporting the involvement of this gene in BMD determination. In addition to identifying further genes associated with BMD, this study confirms the efficiency of extreme-truncate selection designs for quantitative trait association studies.


Subject(s)
Bone Density , Fractures, Bone/genetics , Genome-Wide Association Study , N-Acetylgalactosaminyltransferases/genetics , Osteoporosis, Postmenopausal/genetics , Thrombospondins/genetics , Aged , Aged, 80 and over , Animals , Case-Control Studies , Chloride Channels/genetics , Chromosomes, Human/genetics , Cohort Studies , Disease Models, Animal , Female , Genotype , Humans , Integrin-Binding Sialoprotein/genetics , Latent TGF-beta Binding Proteins/genetics , Male , Mice , Middle Aged , Models, Animal , Mutation , Polymorphism, Single Nucleotide , Proteoglycans/genetics , Receptors, Transforming Growth Factor beta/genetics , SOXC Transcription Factors/genetics , Polypeptide N-acetylgalactosaminyltransferase
9.
PLoS Genet ; 6(12): e1001195, 2010 Dec 02.
Article in English | MEDLINE | ID: mdl-21152001

ABSTRACT

Ankylosing spondylitis (AS) is a common inflammatory arthritic condition. Overt inflammatory bowel disease (IBD) occurs in about 10% of AS patients, and in addition 70% of AS cases may have subclinical terminal ileitis. Spondyloarthritis is also common in IBD patients. We therefore tested Crohn's disease susceptibility genes for association with AS, aiming to identify pleiotropic genetic associations with both diseases. Genotyping was carried out using Sequenom and Applied Biosystems TaqMan and OpenArray technologies on 53 markers selected from 30 Crohn's disease associated genomic regions. We tested genotypes in a population of unrelated individual cases (n = 2,773) and controls (n = 2,215) of white European ancestry for association with AS. Statistical analysis was carried out using a Cochran-Armitage test for trend in PLINK. Strong association was detected at chr1q32 near KIF21B (rs11584383, P = 1.6 × 10(-10), odds ratio (OR) = 0.74, 95% CI:0.68-0.82). Association with disease was also detected for 2 variants within STAT3 (rs6503695, P = 4.6 × 10(-4). OR = 0.86 (95% CI:0.79-0.93); rs744166, P = 2.6 × 10(-5), OR = 0.84 (95% CI:0.77-0.91)). Association was confirmed for IL23R (rs11465804, P = 1.2 × 10(-5), OR = 0.65 (95% CI:0.54-0.79)), and further associations were detected for IL12B (rs10045431, P = 5.2 × 10(-5), OR = 0.83 (95% CI:0.76-0.91)), CDKAL1 (rs6908425, P = 1.1 × 10(-4), OR = 0.82 (95% CI:0.74-0.91)), LRRK2/MUC19 (rs11175593, P = 9.9 × 10(-5), OR = 1.92 (95% CI: 1.38-2.67)), and chr13q14 (rs3764147, P = 5.9 × 10(-4), OR = 1.19 (95% CI: 1.08-1.31)). Excluding cases with clinical IBD did not significantly affect these findings. This study identifies chr1q32 and STAT3 as ankylosing spondylitis susceptibility loci. It also further confirms association for IL23R and detects suggestive association with another 4 loci. STAT3 is a key signaling molecule within the Th17 lymphocyte differentiation pathway and further enhances the case for a major role of this T-lymphocyte subset in ankylosing spondylitis. Finally these findings suggest common aetiopathogenic pathways for AS and Crohn's disease and further highlight the involvement of common risk variants across multiple diseases.


Subject(s)
Chromosomes, Human, Pair 1/genetics , Crohn Disease/genetics , Genetic Variation , STAT3 Transcription Factor/genetics , Spondylitis, Ankylosing/genetics , Cohort Studies , Genetic Predisposition to Disease , Genotype , Humans , Polymorphism, Single Nucleotide , White People/genetics
10.
Nat Genet ; 42(2): 123-7, 2010 Feb.
Article in English | MEDLINE | ID: mdl-20062062

ABSTRACT

To identify susceptibility loci for ankylosing spondylitis, we undertook a genome-wide association study in 2,053 unrelated ankylosing spondylitis cases among people of European descent and 5,140 ethnically matched controls, with replication in an independent cohort of 898 ankylosing spondylitis cases and 1,518 controls. Cases were genotyped with Illumina HumHap370 genotyping chips. In addition to strong association with the major histocompatibility complex (MHC; P < 10(-800)), we found association with SNPs in two gene deserts at 2p15 (rs10865331; combined P = 1.9 x 10(-19)) and 21q22 (rs2242944; P = 8.3 x 10(-20)), as well as in the genes ANTXR2 (rs4333130; P = 9.3 x 10(-8)) and IL1R2 (rs2310173; P = 4.8 x 10(-7)). We also replicated previously reported associations at IL23R (rs11209026; P = 9.1 x 10(-14)) and ERAP1 (rs27434; P = 5.3 x 10(-12)). This study reports four genetic loci associated with ankylosing spondylitis risk and identifies a major role for the interleukin (IL)-23 and IL-1 cytokine pathways in disease susceptibility.


Subject(s)
Genetic Loci/genetics , Genetic Predisposition to Disease , Genome-Wide Association Study , Major Histocompatibility Complex/genetics , Spondylitis, Ankylosing/genetics , Cohort Studies , Humans , Polymorphism, Single Nucleotide/genetics , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...