Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(4): 6446-6462, 2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38439347

ABSTRACT

We present a detailed analysis of multiphysics simulation results to evaluate the threshold for catastrophic optical damage (COD) of high-power laser diodes under misaligned external optical feedback. Three different chip designs are investigated: the non-injecting mirror concept, the non-absorbing mirror concept and the introduction of an additional energy barrier within the waveguide near the front facet. Furthermore, a modification of the external resonator that promises a lower sensitivity towards misalignments is considered. The dependence of the COD threshold on the additional design parameters (bandgap change, modification length, focal length) and the impact of the different approaches on electro-optical efficiency as well as beam quality are analyzed. Compared to the initial design, the different chip design concepts promise an increase of the achievable output power by 8%, 27% and 27% respectively, whereas the modified resonator fully prevents feedback-induced failure.

2.
Opt Express ; 32(5): 7553-7563, 2024 Feb 26.
Article in English | MEDLINE | ID: mdl-38439433

ABSTRACT

We present an intra-cavity frequency doubled Q-switched diode-pumped alexandrite ring-laser directly emitting in the UV at 386 nm. Using LBO as nonlinear crystal, the laser yields a pulse energy up to 3 mJ at 500 Hz with an excellent beam quality of M2 = 1.1. The pulse length is about 920 ns, allowing for very narrow bandwidth in single longitudinal mode operation. The optical-to-optical efficiency for the UV laser is > 9% and almost unchanged compared to the fundamental laser. First injection-seeding experiments show single longitudinal mode operation. The parameters of the laser are suitable for the use as an emitter in a multi-purpose atmospheric Doppler lidar system.

3.
Opt Express ; 31(16): 26104-26119, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37710479

ABSTRACT

Optical aberrations are a critical issue for tight focusing and high precision manufacturing with ultrashort pulsed laser radiation in transparent media. Controlling the wave front of ultrashort laser pulses enable the correction of low order phase front distortion and significantly enhances the simplification of laser-based manufacturing of 3D-parts in glass. The influence of system-inherent, dominating aberrations such as spherical and astigmatic aberrations affect the focal area, the beam caustic and therefore the focus intensity distribution. We correct these aberrations by means of a spatial light modulator (SLM) for various processing depths in glass thickness of up to 12 mm. This flexible aberration correction significantly simplifies the process control and scanning strategies for the selective laser induced etching process. The influence on the selectivity is investigated by comparing the three different focus conditions of the intrinsic microscope objective aberration corrected, the aberrated and the SLM aberration corrected beam profile. The previously necessary pulse energy adjustment for different z positions in the glass volume is compensated via SLM aberration correction in the end. Furthermore, the spatial extend of the modified and etched area is investigated. In consequence, a simplified scan strategy and depth-independent processing parameters can be achieved for the selective laser induced etching process.

4.
Appl Opt ; 60(8): 2288-2303, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33690328

ABSTRACT

The advanced radiographic capability (ARC) laser system, part of the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory, is a short-pulse laser capability integrated into the NIF. The ARC is designed to provide adjustable pulse lengths of ∼1-38ps in four independent beamlets, each with energies up to 1 kJ (depending on pulse duration). A detailed model of the ARC lasers has been developed that predicts the time- and space-resolved focal spots on target for each shot. Measurements made to characterize static and dynamic wavefront characteristics of the ARC are important inputs to the code. Modeling has been validated with measurements of the time-integrated focal spot at the target chamber center (TCC) at low power, and the space-integrated pulse duration at high power, using currently available diagnostics. These simulations indicate that each of the four ARC beamlets achieves a peak intensity on target of up to a few 1018W/cm2.

5.
Appl Opt ; 55(19): 5240-8, 2016 Jul 01.
Article in English | MEDLINE | ID: mdl-27409216

ABSTRACT

Corrective optical elements form an important part of high-precision optical systems. We have developed a method to manufacture high-gradient corrective optical elements for high-power laser systems using deterministic magnetorheological finishing (MRF) imprinting technology. Several process factors need to be considered for polishing ultraprecise topographical structures onto optical surfaces using MRF. They include proper selection of MRF removal function and wheel sizes, detailed MRF tool and interferometry alignment, and optimized MRF polishing schedules. Dependable interferometry also is a key factor in high-gradient component manufacture. A wavefront attenuating cell, which enables reliable measurement of gradients beyond what is attainable using conventional interferometry, is discussed. The results of MRF imprinting a 23 µm deep structure containing gradients over 1.6 µm / mm onto a fused-silica window are presented as an example of the technique's capabilities. This high-gradient element serves as a thermal correction plate in the high-repetition-rate advanced petawatt laser system currently being built at Lawrence Livermore National Laboratory.

6.
Opt Express ; 24(26): 30015-30023, 2016 Dec 26.
Article in English | MEDLINE | ID: mdl-28059386

ABSTRACT

Laser energy absorption and subsequent heat removal from diffraction gratings in chirped pulse compressors poses a significant challenge in high repetition rate, high peak power laser development. In order to understand the average power limitations, we have modeled the time-resolved thermo-mechanical properties of current and advanced diffraction gratings. We have also developed and demonstrated a technique of actively cooling Petawatt scale, gold compressor gratings to operate at 600W of average power - a 15x increase over the highest average power petawatt laser currently in operation. Combining this technique with low absorption multilayer dielectric gratings developed in our group would enable pulse compressors for petawatt peak power lasers operating at average powers well above 40kW.

7.
Opt Express ; 23(12): 15532-44, 2015 Jun 15.
Article in English | MEDLINE | ID: mdl-26193533

ABSTRACT

Precise assessment of the high fluence performance of pulse compressor gratings is necessary to determine the safe operational limits of short-pulse high energy lasers. We have measured the picosecond laser damage behavior of multilayer dielectric (MLD) diffraction gratings used in the compression of chirped pulses on the Advanced Radiographic Capability (ARC) kilojoule petawatt laser system at the Lawrence Livermore National Laboratory (LLNL). We present optical damage density measurements of MLD gratings using the raster scan method in order to estimate operational performance. We also report results of R-on-1 tests performed with varying pulse duration (1-30 ps) in air, and clean vacuum. Measurements were also performed in vacuum with controlled exposure to organic contamination to simulate the grating use environment. Results show sparse defects with lower damage resistance which were not detected by small-area damage test methods.

8.
Opt Lett ; 31(6): 787-9, 2006 Mar 15.
Article in English | MEDLINE | ID: mdl-16544624

ABSTRACT

Optical parametric chirped-pulse amplification (OPCPA) can be used to improve the prepulse contrast in chirped-pulse amplification systems by amplifying the main pulse with a total saturated OPCPA gain, while not affecting the preceding prepulses of the seed oscillator mode-locked pulse train. We show that a simple modification of a multistage OPCPA system into a cascaded optical parametric amplifier (COPA) results in an optical switch and extreme contrast enhancement that can completely eliminate the preceding and trailing oscillator pulses. Instrument-limited measurement of a prepulse contrast ratio of 1.4 x 10(11) is demonstrated from COPA at a 30 mJ level.

SELECTION OF CITATIONS
SEARCH DETAIL
...