Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 119(3): 031302, 2017 Jul 21.
Article in English | MEDLINE | ID: mdl-28777592

ABSTRACT

We present constraints on the masses of extremely light bosons dubbed fuzzy dark matter (FDM) from Lyman-α forest data. Extremely light bosons with a de Broglie wavelength of ∼1 kpc have been suggested as dark matter candidates that may resolve some of the current small scale problems of the cold dark matter model. For the first time, we use hydrodynamical simulations to model the Lyman-α flux power spectrum in these models and compare it to the observed flux power spectrum from two different data sets: the XQ-100 and HIRES/MIKE quasar spectra samples. After marginalization over nuisance and physical parameters and with conservative assumptions for the thermal history of the intergalactic medium (IGM) that allow for jumps in the temperature of up to 5000 K, XQ-100 provides a lower limit of 7.1×10^{-22} eV, HIRES/MIKE returns a stronger limit of 14.3×10^{-22} eV, while the combination of both data sets results in a limit of 20×10^{-22} eV (2σ C.L.). The limits for the analysis of the combined data sets increases to 37.5×10^{-22} eV (2σ C.L.) when a smoother thermal history is assumed where the temperature of the IGM evolves as a power law in redshift. Light boson masses in the range 1-10×10^{-22} eV are ruled out at high significance by our analysis, casting strong doubts that FDM helps solve the "small scale crisis" of the cold dark matter models.

2.
Phys Rev Lett ; 100(4): 041304, 2008 Feb 01.
Article in English | MEDLINE | ID: mdl-18352257

ABSTRACT

We present constraints on the mass of warm dark matter (WDM) particles derived from the Lyman-alpha flux power spectrum of 55 high-resolution HIRES spectra at 2.0 or approximately 1.2 keV (2sigma) if the WDM consists of early decoupled thermal relics and m(WDM) > or approximately 5.6 keV (2sigma) for sterile neutrinos. Adding the Sloan Digital Sky Survey Lyman-alpha flux power spectrum, we get m(WDM) > or approximately 4 keV and m(WDM) > or approximately 28 keV (2sigma) for thermal relics and sterile neutrinos. These results improve previous constraints by a factor of 2.

3.
Phys Rev Lett ; 97(7): 071301, 2006 Aug 18.
Article in English | MEDLINE | ID: mdl-17026219

ABSTRACT

We present constraints on the mass of warm dark matter (WDM) particles from a combined analysis of the matter power spectrum inferred from the Sloan Digital Sky Survey Lyman-alpha flux power spectrum at 2.2

4.
Philos Trans A Math Phys Eng Sci ; 363(1828): 705-13; discussion 713, 2005 Mar 15.
Article in English | MEDLINE | ID: mdl-15681288

ABSTRACT

Massive black holes appear to be an essential ingredient of massive galactic bulges but little is known yet to what extent massive black holes reside in dwarf galaxies and globular clusters. Massive black holes most likely grow by a mixture of merging and accretion of gas in their hierarchically merging host galaxies. While the hierarchical merging of dark matter structures extends to sub-galactic scales and very high redshift, it is uncertain if the same is true for the build-up of massive black holes. I discuss here some of the relevant problems and open questions.

SELECTION OF CITATIONS
SEARCH DETAIL
...