Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 21(13)2021 Jun 29.
Article in English | MEDLINE | ID: mdl-34209518

ABSTRACT

This study aims to measure and compare spatiotemporal gait parameters in nineteen subjects using a full wearable inertial mocap system Xsens (MVN Awinda, Netherlands) and a photoelectronic system one-meter OptoGaitTM (Microgait, Italy) on a treadmill imposing a walking speed of 5 km/h. A total of eleven steps were considered for each subject constituting a dataset of 209 samples from which spatiotemporal parameters (SPT) were calculated. The step length measurement was determined using two methods. The first one considers the calculation of step length based on the inverted pendulum model, while the second considers an anthropometric approach that correlates the stature with an anthropometric coefficient. Although the absolute agreement and consistency were found for the calculation of the stance phase, cadence and gait cycle, from our study, differences in SPT were found between the two systems. Mean square error (MSE) calculation of their speed (m/s) with respect to the imposed speed on a treadmill reveals a smaller error (MSE = 0.0008) using the OptoGaitTM. Overall, our results indicate that the accurate detection of heel strike and toe-off have an influence on phases and sub-phases for the entire acquisition. Future study in this domain should investigate how to design and integrate better products and algorithms aiming to solve the problematic issues already identified in this study without limiting the user's need and performance in a different environment.


Subject(s)
Walking , Wearable Electronic Devices , Biomechanical Phenomena , Gait , Humans , Italy , Netherlands
SELECTION OF CITATIONS
SEARCH DETAIL
...