Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 77
Filter
1.
Food Chem ; 459: 140351, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38981377

ABSTRACT

Buckwheat starch has attracted worldwide attention in the food industry as a valuable raw material or food additive. Nitrogen (N) and sulfur (S) are two nutrients essential to ensure grain quality. This study investigated the combined application of N fertilizer (0, 45 and 90 kg N ha-1) and S fertilizer (0 and 45 kg SO3 ha-1) on the chemical composition, structure and physicochemical properties of buckwheat starch. The results showed that increasing the fertilizer application decreased amylose content and starch granule size but increased light transmittance, water solubility and swelling power. The stability of the absorption peak positions and the decrease in short-range order degree suggested that fertilization influenced the molecular structure of buckwheat starch. In addition, increases in viscosity and gelatinization enthalpy as well as decreases in gelatinization temperatures and dynamic rheological properties indicated changes in the processing characteristics and product quality of buckwheat-based foods.

2.
J Agric Food Chem ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828918

ABSTRACT

The present study investigated the effect of nitrogen fertilization (NF) at the levels of 0, 45, and 90 kg·ha-1 combined with selected sulfur complex fertilization (SCF) levels of 0 and 45 kg·ha-1 on the nutritional and technological characteristics of buckwheat flour from five varieties. The results showed that the genotype was a critical factor affecting the chemical composition and physicochemical properties of buckwheat flour. NF significantly increased protein, total starch, and amylose content as well as mineral composition but decreased particle size, color value, and water hydration properties. However, SCF enhanced the ash content and decreased the protein content but had no significant effect on the pasting temperature. In addition, the combination of NF and SCF significantly reduced granule size, water solubility, viscosity, and rheological properties with increasing fertilization levels. This study can guide the cultivation of buckwheat with the desired physicochemical properties and provide information for buckwheat-based products in the food industry.

3.
J Microbiol Biotechnol ; 34(5): 1017-1028, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38803105

ABSTRACT

Lignocellulolytic enzymes play a crucial role in efficiently converting lignocellulose into valuable platform molecules in various industries. However, they are limited by their production yields, costs, and stability. Consequently, their production by producers adapted to local environments and the choice of low-cost raw materials can address these limitations. Due to the large amounts of olive stones (OS) generated in Morocco which are still undervalued, Penicillium crustosum, Fusarium nygamai, Trichoderma capillare, and Aspergillus calidoustus, are cultivated under different fermentation techniques using this by-product as a local lignocellulosic substrate. Based on a multilevel factorial design, their potential to produce lignocellulolytic enzymes during 15 days of dark incubation was evaluated. The results revealed that P. crustosum expressed a maximum total cellulase activity of 10.9 IU/ml under sequential fermentation (SF) and 3.6 IU/ml of ß-glucosidase activity under submerged fermentation (SmF). F. nygamai recorded the best laccase activity of 9 IU/ml under solid-state fermentation (SSF). Unlike T. capillare, SF was the inducive culture for the former activity with 7.6 IU/ml. A. calidoustus produced, respectively, 1,009 µg/ml of proteins and 11.5 IU/ml of endoglucanase activity as the best results achieved. Optimum cellulase production took place after the 5th day under SF, while ligninases occurred between the 9th and the 11th days under SSF. This study reports for the first time the lignocellulolytic activities of F. nygamai and A. calidoustus. Furthermore, it underlines the potential of the four fungi as biomass decomposers for environmentally-friendly applications, emphasizing the efficiency of OS as an inducing substrate for enzyme production.


Subject(s)
Fermentation , Lignin , Olea , Lignin/metabolism , Olea/microbiology , Aspergillus/enzymology , Aspergillus/metabolism , Cellulase/metabolism , Cellulase/biosynthesis , Laccase/metabolism , Laccase/biosynthesis , Penicillium/enzymology , Penicillium/metabolism , beta-Glucosidase/metabolism , beta-Glucosidase/biosynthesis , Fusarium/enzymology , Fusarium/metabolism , Trichoderma/enzymology , Trichoderma/metabolism , Fungi/enzymology , Fungi/metabolism , Morocco , Fungal Proteins/metabolism
4.
Front Plant Sci ; 15: 1394413, 2024.
Article in English | MEDLINE | ID: mdl-38799097

ABSTRACT

Intercropping is considered advantageous for many reasons, including increased yield stability, nutritional value and the provision of various regulating ecosystem services. However, intercropping also introduces diverse competition effects between the mixing partners, which can negatively impact their agronomic performance. Therefore, selecting complementary intercropping partners is the key to realizing a well-mixed crop production. Several specialized intercrop breeding concepts have been proposed to support the development of complementary varieties, but their practical implementation still needs to be improved. To lower this adoption threshold, we explore the potential of introducing minor adaptations to commonly used monocrop breeding strategies as an initial stepping stone towards implementing dedicated intercrop breeding schemes. While we acknowledge that recurrent selection for reciprocal mixing abilities is likely a more effective breeding paradigm to obtain genetic progress for intercrops, a well-considered adaptation of monoculture breeding strategies is far less intrusive concerning the design of the breeding programme and allows for balancing genetic gain for both monocrop and intercrop performance. The main idea is to develop compatible variety combinations by improving the monocrop performance in the two breeding pools in parallel and testing for intercrop performance in the later stages of selection. We show that the optimal stage for switching from monocrop to intercrop testing should be adapted to the specificity of the crop and the heritability of the traits involved. However, the genetic correlation between the monocrop and intercrop trait performance is the primary driver of the intercrop breeding scheme optimization process.

5.
BMC Plant Biol ; 24(1): 223, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38539072

ABSTRACT

BACKGROUND: Triticale is making its way on dairy farms as an alternative forage crop. This requires the availability of high-yielding triticale varieties with good digestibility. Triticale forage breeding mainly focussed on biomass yield, but efforts to improve digestibility are increasing. We previously investigated the interrelationships among different quality traits in soft dough triticale: starch, acid detergent fibre and in vitro digestibility of organic matter (IVOMD) and of neutral detergent fibre (IVNDFD) of the total plant, IVNDFD and Klason lignin of the stems, and ear proportion and stem length. Here we determine the genetic control of these traits, using a genome-wide association (GWAS) approach. A total of 33,231 DArTseq SNP markers assessed in a collection of 118 winter triticale genotypes, including 101 varieties and 17 breeding lines, were used. RESULTS: The GWAS identified a total of 53 significant marker-trait associations (MTAs). The highest number of significantly associated SNP markers (n = 10) was identified for total plant IVNDFD. A SNP marker on chromosome 1A (4211801_19_C/T; 474,437,796 bp) was found to be significantly associated with ear proportion, and plant and stem IVNDFD, with the largest phenotypic variation for ear proportion (R²p = 0.23). Based on MTAs, candidate genes were identified which were of particular relevance for variation in in vitro digestibility (IVD) because they are putatively involved in plasma membrane transport, cytoskeleton organisation, carbohydrate metabolic processes, protein phosphorylation, and sterol and cell wall biogenesis. Interestingly, a xyloglucan-related candidate gene on chromosome 2R, SECCE2Rv1G0126340, was located in close proximity of a SNP significantly associated with stem IVNDFD. Furthermore, quantitative trait loci previously reported in wheat co-localized with significantly associated SNP markers in triticale. CONCLUSIONS: A collection of 118 winter triticale genotypes combined with DArTseq SNP markers served as a source for identifying 53 MTAs and several candidate genes for forage IVD and related traits through a GWAS approach. Taken together, the results of this study demonstrate that the genetic diversity available in this collection can be further exploited for research and breeding purposes to improve the IVD of triticale forage.


Subject(s)
Genome-Wide Association Study , Triticale , Detergents , Plant Breeding , Phenotype
6.
J Anim Physiol Anim Nutr (Berl) ; 108(1): 111-125, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37602531

ABSTRACT

Hydrolysable tannins (HT) show potential as silage additive for autumn herbage silages, high in (rumen degradable) protein, as they may reduce proteolysis. Additionally, they have abilities to form pH-reversible tannin-protein complexes, non-degradable in the rumen but degradable in the abomasum and intestines of ruminants. Therefore they can improve milk N efficiency and shift N excretions from urine to faeces, possibly mitigating the environmental impact of ruminants. In this study, two small bunker silos were filled with autumn grass. One was treated with 20 g/kg DM HT extract (TAN) (TannoSan-L), the other with 8 mg/kg DM inoculant containing lactic acid bacteria (INO) (Bonsilage Fit G). Secondly, micro-silos (2.75 L) were filled with four treatments; (1) grass without additive (CON) (n = 5); (2) TAN (n = 5); (3) INO (n = 5); and (4) TAN + INO (n = 5). The bunker silos were used in a cross-over feeding experiment with periods of 4 weeks involving 22 lactating Holstein cows (average ± SD: 183 ± 36.3 days in milk, 665 ± 71.0 kg body weight, and 33.8 ± 3.91 kg/day milk yield). The HT dose was insufficient to reduce proteolysis or alter chemical composition and nutritional value in the micro- and bunker silages. Including grass silage added with TAN (3.2 g HT/kg DM) in the diet, did not affect feed intake nor fat and protein corrected milk yield in comparison to feeding the grass silage added with INO in a similar diet. The TAN-fed cows had an increased faecal N excretion and decreased apparent total-tract N and organic matter digestibility, but no improvement in the cows' N utilization could be confirmed in milk and blood urea levels. Overall, feeding an autumn grass silage treated with 20 g/kg chestnut HT extract did not affect the performance of dairy cows in comparison to feeding an autumn grass silage treated with a lactic acid bacteria inoculant.


Subject(s)
Agricultural Inoculants , Lactobacillales , Female , Cattle , Animals , Poaceae/metabolism , Silage/analysis , Tannins/pharmacology , Lactation , Agricultural Inoculants/metabolism , Fermentation , Lactic Acid/metabolism , Digestion , Milk/chemistry , Diet/veterinary , Hydrolyzable Tannins/analysis , Hydrolyzable Tannins/metabolism , Hydrolyzable Tannins/pharmacology , Rumen/metabolism , Plant Extracts/pharmacology , Ruminants , Nutritive Value , Zea mays/metabolism
7.
PeerJ ; 11: e15685, 2023.
Article in English | MEDLINE | ID: mdl-38050609

ABSTRACT

Maize (Zea mays L.) is a staple food for many households in sub-Saharan Africa (SSA) and also contributes to the gross domestic product (GDP). However, the maize yields reported in most SSA countries are very low and this is mainly attributed to biotic and abiotic stresses. These stresses have been exacerbated by climate change which has led to long periods of drought or heavy flooding and the emergence of new biotic stresses. Few reports exist which compile the biotic stresses affecting maize production in SSA. Here, five major biotic stresses of maize in Kenya are presented which are attributed to high yield losses. They include Maize lethal necrosis, fall armyworm, gray leaf spot, turcicum leaf blight and desert locusts. Maize lethal necrosis and fall armyworm are new biotic stresses to the Kenyan maize farmer while gray leaf spot, and turcicum leaf blight are endemic to the region. The invasion by the desert locusts is speculated to be caused by climate change. The biotic stresses cause a reduction in maize yield of 30-100% threatening food security. Therefore, this review focuses on the cause, control measures employed to control these diseases and future prospective. There should be deliberate efforts from the government and researchers to control biotic stresses affecting maize yields as the effect of these stresses is being exacerbated by the changing climate.


Subject(s)
Plant Diseases , Zea mays , Kenya , Stress, Physiological , Food Security , Necrosis
8.
J Psychoactive Drugs ; : 1-12, 2023 May 08.
Article in English | MEDLINE | ID: mdl-37155939

ABSTRACT

Growing evidence on medical cannabis has moved its legislation forward in various countries, which has increased research on stakeholder reactions. While various studies looked at experts and users, research on public perceptions is scarce. This study aims to (1) examine the relationships between knowledge, perceptions, and behavioral intention toward medical cannabis, and (2) identify and profile key segments within the general public. An online survey was conducted among 656 respondents in Belgium. Findings showed that both subjective and objective knowledge are relatively poor, while risk/benefit perceptions and behavioral intention are much more positive. Subjective and objective knowledge as well as social trust have a positive influence on benefit perceptions and a negative influence on risk perceptions. In turn, risk and benefit perceptions are key determinants of behavioral intention, but in opposite directions. Furthermore, cluster analysis identified a cautious (23% of the sample), positive (50%), and enthusiastic cluster (27%). In terms of socio-demographic profile, older and highly educated people were significantly more represented in the latter two clusters. While our study demonstrated that cannabis is well accepted for medical purposes, research is needed to further validate the relationships between knowledge, perceptions, and (intended) behavior in different settings and policy contexts.

9.
Plants (Basel) ; 12(4)2023 Feb 07.
Article in English | MEDLINE | ID: mdl-36840085

ABSTRACT

Rye (Secale cereale subsp. cereale L.) has long been exploited as a valuable alternative genetic resource in wheat (Triticum aestivum L.) breeding. Indeed, the introgression of rye genetic material led to significant breakthroughs in the improvement of disease and pest resistance of wheat, as well as a few agronomic traits. While such traits remain a high priority in cereal breeding, nutritional aspects of grain crops are coming under the spotlight as consumers become more conscious about their dietary choices and the food industry strives to offer food options that meet their demands. To address this new challenge, wheat breeding can once again turn to rye to look for additional genetic variation. A nutritional aspect that can potentially greatly benefit from the introgression of rye genetic material is the dietary fibre content of flour. In fact, rye is richer in dietary fibre than wheat, especially in terms of arabinoxylan content. Arabinoxylan is a major dietary fibre component in wheat and rye endosperm flours, and it is associated with a variety of health benefits, including normalisation of glycaemic levels and promotion of the gut microbiota. Thus, it is a valuable addition to the human diet, and it can represent a novel target for wheat-rye introgression breeding.

10.
Physiol Plant ; 175(1): e13862, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36690578

ABSTRACT

ß-Aminobutyric acid (BABA) induces resistance to a/biotic stress but is associated with phytotoxicity in some plant species. There are two enantiomers of BABA, the R and S enantiomers. We evaluated the phytotoxicity caused by the RS BABA (racemic mixture of R and S BABA), evaluating the dose-response effect and different modes of application on tomato. Results show that RS BABA-induced phytotoxicity in tomato is dose-dependent and stronger with foliar applications than with soil drench. We further evaluated the phytotoxicity of the two enantiomers separately and observed that BABA-induced phytotoxicity is stereomer-specific. In comparison with less phytotoxic effects induced by S BABA, R BABA induces dose-dependent and systemic phytotoxic symptoms. To investigate the possible physiological causes of this phytotoxicity, we measured levels of oxidative stress and anthocyanins and validated the findings with gene expression analyses. Our results show that high doses of RS and R BABA induce hydrogen peroxide, lipid peroxidation, and anthocyanin accumulation in tomato leaves, while this response is milder and more transient upon S BABA application. Next, we evaluated BABA induced resistance against root-knot nematode Meloidogyne incognita in tomato. BABA-induced resistance was found to be stereomer-specific and dependent on dose and mode of application. R or RS BABA multiple soil drench application at low doses induces resistance to nematodes with less phytotoxic effects. Taken together, our data provide useful knowledge on how BABA can be applied in crop production by enhancing stress tolerance and limiting phytotoxicity.


Subject(s)
Solanum lycopersicum , Anthocyanins , Aminobutyrates , Soil
11.
Heliyon ; 9(1): e12760, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36685447

ABSTRACT

Cereal forages, such as triticale forage, progressively gain interest as alternative crop for maize. The main study objective was to investigate the variation in potential feeding value of triticale forage among maturity stage, growing season and genotype, using total plant and stem fractions. Therefore, near infrared spectroscopy (NIRS) was evaluated as fast screening tool. The prediction ability was good (ratio of prediction to deviation, RPD ≥3.0) for total plant residual moisture, starch, sugars and for stem crude ash (CAsh) and neutral detergent fibre (aNDFom); suitable for screening (2.0 ≤ RPD <3.0) for total plant CAsh, acid detergent fibre (ADFom), in vitro digestibility of organic matter (IVOMD), in vitro digestibility of neutral detergent fibre (IVNDFD) and for stem total lignin (TL) and IVNDFD; poor (1.5 ≤ RPD <2.0) for total plant crude protein, crude fat, aNDFom, lignin (sa) and for stem Klason lignin (KL); unreliable (RPD <1.5) for stem residual moisture and acid soluble lignin (ASL). The evolution in potential feeding value of 36 genotypes harvested at the medium and late milk to the early, soft and hard dough stage was followed. The most important changes occurred between the late milk and early dough stage, with little variation in quality after the soft dough stage. During 2 growing seasons, variation in feeding value of 120 genotypes harvested at the soft dough stage was demonstrated. Interestingly, variation in stem IVNDFD is almost twice as high as for the total plant (CV 12.4% versus 6.6%). Furthermore, Spearman correlations show no link between dry matter yield and digestibility of genotypes harvested at the soft dough stage. Based on linear regression models ADFom appears as main predictor of both plant IVOMD and plant IVNDFD. Stem IVNDFD is particularly determined by KL.

12.
New Phytol ; 237(2): 423-440, 2023 01.
Article in English | MEDLINE | ID: mdl-36259090

ABSTRACT

During stem elongation, wheat (Triticum aestivum) increases its stem carbohydrate content before anthesis as a reserve for grain filling. Hydraulic functioning during this mobilization process is not well understood, and contradictory results exist on the direct effect of drought on carbohydrate mobilization. In a dedicated experiment, wheat plants were subjected to drought stress during carbohydrate mobilization. Measurements, important to better understand stem physiology, showed some unexpected patterns that could not be explained by our current knowledge on water transport. Traditional water flow and storage models failed to properly describe the drought response in wheat stems during carbohydrate mobilization. To explain the measured patterns, hypotheses were formulated and integrated in a dedicated model for wheat. The new mechanistic model simulates two hypothetical water storage compartments: one where water is quickly exchanged with the xylem and one that contains the carbohydrate storage. Water exchange between these compartments is turgor-driven. The model was able to simulate the measured increase in stored carbohydrate concentrations with a decrease in water content and stem diameter. Calibration of the model showed the importance of turgor-driven apoplastic water flow during carbohydrate mobilization. This resulted in an increase in stem hydraulic capacitance, which became more important under drought stress.


Subject(s)
Carbohydrates , Triticum , Triticum/metabolism , Water/metabolism , Edible Grain/metabolism , Biological Transport , Droughts
13.
Front Plant Sci ; 14: 1228850, 2023.
Article in English | MEDLINE | ID: mdl-38259927

ABSTRACT

Introduction: Over the last decade, there has been a growing interest in cereal-legume intercropping for sustainable agriculture. As a result numerous papers, including reviews, focus on this topic. Screening this large amount of papers, to identify knowledge gaps and future research opportunities, manually, would be a complex and time consuming task. Materials and methods: Bibliometric analysis combined with text mining and topic modelling, to automatically find topics and to derive a representation of intercropping papers as a potential solution to reduce the workload was tested. Both common (e.g. wheat and soybean) as well as underutilized crops (e.g. buckwheat, lupin, triticale) were the focus of this study. The corpus used for the analysis was retrieved from Web of Science and Scopus on 5th September 2022 and consisted of 4,732 papers. Results: The number of papers on cereal-legume intercropping increased in recent years, with most studies being located in China. Literature mainly dealt with the cereals maize and wheat and the legume soybean whereas buckwheat and lupin received little attention from academic researchers. These underutilized crops are certainly interesting to be used as intercropping partners, however, additional research on optimization of management and cultivar's choice is important. Yield and nitrogen fixation are the most commonly studied traits in cereal-legume intercropping. Last decade, there is an increasing interest in climate resilience, sustainability and biodiversity. Also the term "ecosystem services" came into play, but still with a low frequency. The regulating services and provisioning services seem to be the most studied, in contrast terms related to potential cultural services were not encountered. Discussion: In conclusion, based on this review several research opportunities were identified. Minor crops like lupin and buckwheat need to be evaluated for their role as intercropping partners. The interaction between species based on e.g. root exudates needs to be further unraveled. Also diseases, pests and weeds in relation to intercropping deserve more attention and finally more in-depth research on the additional benefits/ecosystem services associated with intercropping systems is necessary.

14.
Rev. colomb. biotecnol ; 24(2): 36-45, jul.-dic. 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1423773

ABSTRACT

ABSTRACT In vitro root cultivation techniques based on modified root systems are often used in studies on Arbuscular Mycorrhizal Fungi (AMF). It is a simplified but powerful tool to investigate AMF root colonization and development of the extraradical mycelium. The aim of this study was to establish and characterize the in vitro culture of a Cuban strain of Rhizophagus irregularis (INCAM 11) by using transformed chicory roots. For that, superficially disinfected propagules of R. irregularis were co-culture with the hairy transformed chicory roots on Modified Strullu and Romand (MSR) medium during five months. Spore germination was observed 3-5 days after surface disinfection. The first contact between AMF hyphae and roots occurred 1 - 3 days after germination and a significant production of extensive extraradical mycelium was observed. New spore formation started within 21 - 25 days. After 5 months, 2000 spores could be observed per plate which were able to germinate, colonize, establish and reproduce again spores when associated to young transformed roots of chicory. The most frequent associated microorganism to the in vitro culture of INCAM 11 was isolated and identified as Paenibacillus sp.


RESUMEN Las técnicas de cultivo de raíces in vitro basadas en sistemas de raíces modificadas se utilizan a menudo en los estudios sobre hongos micorrízicos arbusculares (HMA). Es una herramienta simplificada pero poderosa para investigar la colonización de las raíces de los HMA y el desarrollo del micelio extrarradical. El objetivo de este estudio fue establecer y caracterizar el cultivo in vitro de una cepa cubana de Rhizophagus irregularis (INCAM 11) utilizando raíces transformadas de achicoria. Para ello, propágulos de R. irregularis desinfectados superficialmente fueron co-cultivados con las raíces transformadas de achicoria en medio Strullu y Romand modificado (SRM) durante cinco meses. La germinación de las esporas se observó 3-5 días después de la desinfección superficial. El primer contacto entre las hifas y las raíces se produjo entre 1 y 3 días después de la germinación y se observó una producción significativa de micelio extrarradical. La formación de nuevas esporas comenzó entre 21 - 25 días. Después de 5 meses, se pudieron observar 2000 esporas por placa que fueron capaces de germinar, colonizar, establecer y reproducir nuevas esporas cuando se asociaron a raíces jóvenes transformadas de achicoria. El microorganismo asociado frecuentemente al cultivo in vitro de INCAM 11 fue aislado e identificado como Paenibacillus sp.

15.
Environ Entomol ; 51(5): 1020-1029, 2022 10 21.
Article in English | MEDLINE | ID: mdl-35866497

ABSTRACT

Problems with aphids in small grain cereals, either direct by feeding, or indirect by transmission of Barley Yellow Dwarf Virus, are expected to increase due to climate change and a recent ban on neonicotinoid seed treatments by the European Union. Moreover, insecticide resistance against pyrethroid insecticides is reported at multiple locations throughout the world. Therefore, a better understanding of cereal aphid population dynamics and increased attention towards an integrated pest management is needed. In this study, cereal aphids were monitored on 193 maize and small grain cereal fields throughout Flanders, Belgium. The population dynamics and species distribution were observed throughout the year and the effects of spatio-temporal variables were explored. A significant negative effect was found of grassland in a 1,000 m radius and a positive effect of grain maize in a 3,000 m radius around a small grain cereals field on the maximum infestation rate with aphids in autumn within this field. In a 3,000 m and 5,000 m radius, a significant positive effect of grain maize and a significant negative effect of other small grain cereals was found on the maximum infestation rate during the whole growing season within this field. The mean daily average temperature from 118 to 19 d before sowing had a significant positive effect on the maximum infestation rate in autumn. Mean precipitation, wind speed, and humidity from 52 to 26, 46 to 23, and 107 to 13 d before sowing respectively, had a significant negative effect on the maximum infestation rate in autumn.


Subject(s)
Aphids , Hordeum , Insecticides , Luteovirus , Pyrethrins , Animals , Edible Grain , Insecticides/pharmacology , Incidence , Neonicotinoids , Population Dynamics
16.
J Genet Eng Biotechnol ; 20(1): 96, 2022 Jul 03.
Article in English | MEDLINE | ID: mdl-35780465

ABSTRACT

BACKGROUND: Gaining insight into crop diversity, both at the genetic and phenotypic levels, is of prime importance for onion breeding with an enhanced yield and quality in combination with improved resistance to biotic and abiotic stresses. In the current study, 192 different onion plants, representing 16 ecotypes, were characterized using ISSR markers. RESULTS: Based on the ISSR marker profile, there was a clear grouping of the plants into 16 different ecotypes. Though the 16 populations originated from the same geographic region in Morocco, a significant genetic diversity was detected. After a genomic characterization, field trials in three different environments in Morocco were laid out. The phenotypic characterization showed that there were always significant differences between ecotypes, and for most traits, there was also a significant environmental effect and a significant interaction between environment and ecotype. The broad-sense heritability (H2) for the phenotypic traits associated with color (L*, a*, and b*) was the largest (84.2%, 80.6%, 79.2%), demonstrating that color is conditioned primarily by genetic factors. In contrast, the H2 for yield was the lowest (41.8%), indicating that the environment has a substantial effect on yield. In addition, there was a significant association between the presence/absence of certain bands and various phenotypic traits. CONCLUSION: ISSR markers are a powerful tool in distinguishing onion ecotypes. In addition, significant associations between marker scores and phenotypic traits could be detected, representing particular importance for future breeding programs.

17.
Toxins (Basel) ; 14(5)2022 04 26.
Article in English | MEDLINE | ID: mdl-35622551

ABSTRACT

Acute stunting in children, liver cancer, and death often occur due to human exposure to aflatoxins in food. The severity of aflatoxin contamination depends on the type of Aspergillus fungus infecting the crops. In this study, Aspergillus species were isolated from households' staple foods and were characterized for different aflatoxin chemotypes. The non-aflatoxigenic chemotypes were evaluated for their ability to reduce aflatoxin levels produced by aflatoxigenic A. flavus strains on maize grains. Aspergillus flavus (63%), A. tamarii (14%), and A. niger (23%) were the main species present. The A. flavus species included isolates that predominantly produced aflatoxins B1 and B2, with most isolates producing a high amount (>20 ug/µL) of aflatoxin B1 (AFB1), and a marginal proportion of them also producing G aflatoxins with a higher level of aflatoxin G1 (AFG1) than AFB1. Some non-aflatoxigenic A. tamarii demonstrated a strong ability to reduce the level of AFB1 by more than 95% when co-inoculated with aflatoxigenic A. flavus. Therefore, field evaluation of both non-aflatoxigenic A. flavus and A. tamarii would be an important step toward developing biocontrol agents for mitigating field contamination of crops with aflatoxins in Uganda.


Subject(s)
Aflatoxins , Aflatoxin B1 , Aflatoxins/analysis , Aspergillus , Aspergillus flavus , Child , Crops, Agricultural , Humans , Uganda
18.
PLoS One ; 17(2): e0262497, 2022.
Article in English | MEDLINE | ID: mdl-35108295

ABSTRACT

Organic fertilizers and especially microbial biomass, also known as microbial fertilizer, can enable a paradigm shift to the conventional fertilizer-to-food chain, particularly when produced on secondary resources. Microbial fertilizers are already common practice (e.g. Bloom® and Synagro); yet microbial fertilizer blends to align the nutrient release profile to the plant's needs are, thus far, unexplored. Moreover, most research only focuses on direct fertilization effects without considering added value properties, such as disease prevention. This study has explored three promising types of microbial fertilizers, namely dried biomass from a consortium of aerobic heterotrophic bacteria, a microalga (Arthrospira platensis) and a purple non-sulfur bacterium (Rhodobacter sphaeroides). Mineralization and nitrification experiments showed that the nitrogen mineralization profile can be tuned to the plant's needs by blending microbial fertilizers, without having toxic ammonium peaks. In a pot trial with perennial ryegrass (Lolium perenne L.), the performance of microbial fertilizers was similar to the reference organic fertilizer, with cumulative dry matter yields of 5.6-6.7 g per pot. This was confirmed in a pot trial with tomato (Solanum lycopersicum L.), showing an average total plant length of 90-99 cm after a growing period of 62 days for the reference organic fertilizer and the microbial fertilizers. Moreover, tomato plants artificially infected with powdery mildew (Oidium neolycopersici), a devastating disease for the horticultural industry, showed reduced disease symptoms when A. platensis was present in the growing medium. These findings strengthen the application potential of this novel class of organic fertilizers in the bioeconomy, with a promising match between nutrient mineralization and plant requirements as well as added value in crop protection.


Subject(s)
Fertilizers/microbiology , Lolium/growth & development , Solanum lycopersicum/growth & development , Bacteria, Aerobic/chemistry , Bacteria, Aerobic/metabolism , Biomass , Fertilizers/analysis , Hydrogen-Ion Concentration , Nitrification , Nitrogen/analysis , Nutrients/analysis
19.
Front Plant Sci ; 13: 775652, 2022.
Article in English | MEDLINE | ID: mdl-35173756

ABSTRACT

Pre-anthesis drought is expected to greatly increase yield losses in wheat (Triticum aestivum L.), one of the most important crops worldwide. Most studies investigate the effects of pre-anthesis drought only at maturity. The physiology of the plant before anthesis and how it is affected during drought is less studied. Our study focused on physiological patterns in wheat plants during pre- and post-anthesis drought. To this end, we measured leaf xylem water potential, osmotic potential and water content in different plant parts at a high temporal frequency: every 3 days, three times a day. The experiment started just before booting until 2 weeks after flowering. Drought stress was induced by withholding irrigation with rewatering upon turgor loss, which occurred once before and once after anthesis. The goal was to investigate the patterns of osmotic adjustment, when it is used for protection against drought, and if the strategy changes during the phenological development of the plant. Our data gave no indication of daily osmotic adjustment, but did show a delicate control of the osmotic potential during drought in both leaves and stem. Under high drought stress, osmotic potential decreased to avoid further water loss. Before anthesis, rewatering restored leaf water potential and osmotic potential quickly. After anthesis, rewatering restored water potential in the flag leaves, but the osmotic potential in the stem and flag leaf remained low longer. Osmotic adjustment was thus maintained longer after anthesis, showing that the plants invest more energy in the osmotic adjustment after anthesis than before anthesis. We hypothesize that this is because the plants consider the developing ear after anthesis a more important carbohydrate sink than the stem, which is a carbohydrate sink before anthesis, to be used later as a reserve. Low osmotic potential in the stem allowed turgor maintenance, while the low osmotic potential in the flag leaf led to an increase in leaf turgor beyond the level of the control plants. This allowed leaf functioning under drought and assured that water was redirected to the flag leaf and not used to refill the stem storage.

20.
Food Res Int ; 152: 110883, 2022 02.
Article in English | MEDLINE | ID: mdl-35181069

ABSTRACT

Mycotoxin food contamination data is scattered, isolated, and poorly described. Reporting mycotoxin contamination data in a standardized manner is essential for collaborative research and integrated large-scale data analysis. The present study aimed to complement the existing European Food Safety Authority (EFSA) and Global Environment Monitoring System (GEMS) mycotoxin contamination data descriptors for application in low- and middle-income countries in particular. A three-round Delphi process was followed to establish a consensus on the missing descriptors. An invitation letter was first sent to 34 mycotoxin experts of an international collaboration of MYTOX-SOUTH®, of which 12 finally participated in the study. The response rate was 29.4% (10/34) in the Delphi I, 75% (9/12) in the Delphi II, and 83.3% (10/12) in the Delphi III rounds. The majority of the Delphi study participants were professors from 6 universities. Twenty-two descriptors (17 study level, 1 sample level, and 4 assay level) were proposed and were mainly related to pre and post-harvest periods of a food/feed sample. The pre-defined (>70% in the Delphi II and > 80% in the Delphi III) agreement among participants was achieved for all the proposed descriptors. The existing descriptors from EFSA (33) and GEMS (25) with the new proposed MYTOX-SOUTH® (22) descriptors, in total 80 descriptors, were arranged as study, sample, and assay categories and organized as a data submission template. Pre-testing of the template on three mycotoxin researchers indicated that the average time to fill out the form for a sample was 42 min. The current format helps mycotoxin contamination data to become more informative, reusable, and applicable especially to data from low- and middle-income countries. The above-proposed descriptors will help GEMS to provide technical cooperation with countries wishing to initiate and strengthen food contaminant monitoring programs. Similarly, the descriptors from the current study will be useful for EFSA as it regularly updates the Standard Sample Description. A standardized global reporting format for mycotoxin contamination data will enable national authorities to perform mycotoxins exposure and risk assessments and share data for international benchmarking. Standardized reporting and sharing of mycotoxin contamination data should be further advocated in ongoing research and become common practice in authorities, companies, academia, and other entities working on mycotoxin in food and feed.


Subject(s)
Mycotoxins , Food Contamination/analysis , Food Safety , Humans , Mycotoxins/analysis , Risk Assessment , Universities
SELECTION OF CITATIONS
SEARCH DETAIL
...