Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(2): 2356-2363, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38297768

ABSTRACT

Terahertz scattering-type scanning near-field optical microscopy (THz-sSNOM) provides a noninvasive way to probe the low frequency conductivity of materials and to characterize material compositions at the nanoscale. However, the potential capability of atomic compositional analysis with THz nanoscopy remains largely unexplored. Here, we perform THz near-field imaging and spectroscopy on a model rare-earth alloy of lanthanum silicide (La-Si) which is known to exhibit diverse compositional and structural phases. We identify subwavelength spatial variations in conductivity that is manifested as alloy microstructures down to much less than 1 µm in size and is remarkably distinct from the surface topography of the material. Signal contrasts from the near-field scattering responses enable mapping the local silicon/lanthanum content differences. These observations demonstrate that THz-sSNOM offers a new avenue to investigate the compositional heterogeneity of material phases and their related nanoscale electrical as well as optical properties.

2.
Rev Sci Instrum ; 94(4)2023 Apr 01.
Article in English | MEDLINE | ID: mdl-38081286

ABSTRACT

We have developed a versatile near-field microscopy platform that can operate at high magnetic fields and below liquid-helium temperatures. We use this platform to demonstrate an extreme terahertz (THz) nanoscope operation and to obtain the first cryogenic magneto-THz time-domain nano-spectroscopy/imaging at temperatures as low as 1.8 K, magnetic fields of up to 5 T, and with operation of 0-2 THz. Our Cryogenic Magneto-Terahertz Scattering-type Scanning Near-field Optical Microscope (or cm-THz-sSNOM) instrument is comprised of three main equipment: (i) a 5 T split pair magnetic cryostat with a custom made insert, (ii) a custom sSNOM instrument capable of accepting ultrafast THz excitation, and (iii) a MHz repetition rate, femtosecond laser amplifier for broadband THz pulse generation and sensitive detection. We apply the cm-THz-sSNOM to obtain proof of principle measurements of superconductors and topological semimetals. The new capabilities demonstrated break grounds for studying quantum materials that require an extreme environment of cryogenic operation and/or applied magnetic fields in nanometer space, femtosecond time, and THz energy scales.

SELECTION OF CITATIONS
SEARCH DETAIL
...