Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Antimicrob Agents Chemother ; 66(4): e0210921, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35266827

ABSTRACT

In Plasmodium, the first two and rate-limiting enzymes of the pentose phosphate pathway, glucose 6-phosphate dehydrogenase (G6PD) and the 6-phosphogluconolactonase, are bifunctionally fused to a unique enzyme named GluPho, differing structurally and mechanistically from the respective human orthologs. Consistent with the enzyme's essentiality for malaria parasite proliferation and propagation, human G6PD deficiency has immense impact on protection against severe malaria, making PfGluPho an attractive antimalarial drug target. Herein we report on the optimized lead compound N-(((2R,4S)-1-cyclobutyl-4-hydroxypyrrolidin-2-yl)methyl)-6-fluoro-4-methyl-11-oxo-10,11-dihydrodibenzo[b,f][1,4]thiazepine-8-carboxamide (SBI-0797750), a potent and fully selective PfGluPho inhibitor with robust nanomolar activity against recombinant PfGluPho, PvG6PD, and P. falciparum blood-stage parasites. Mode-of-action studies have confirmed that SBI-0797750 disturbs the cytosolic glutathione-dependent redox potential, as well as the cytosolic and mitochondrial H2O2 homeostasis of P. falciparum blood stages, at low nanomolar concentrations. Moreover, SBI-0797750 does not harm red blood cell (RBC) integrity and phagocytosis and thus does not promote anemia. SBI-0797750 is therefore a very promising antimalarial lead compound.


Subject(s)
Antimalarials , Glucosephosphate Dehydrogenase Deficiency , Malaria, Falciparum , Malaria, Vivax , Malaria , Antimalarials/pharmacology , Antimalarials/therapeutic use , Carboxylic Ester Hydrolases , Glucose/metabolism , Glucosephosphate Dehydrogenase/metabolism , Humans , Hydrogen Peroxide/metabolism , Malaria, Falciparum/drug therapy , Malaria, Vivax/drug therapy , Phosphates , Plasmodium falciparum/metabolism , Plasmodium vivax
2.
Int J Mol Sci ; 21(20)2020 Oct 13.
Article in English | MEDLINE | ID: mdl-33066016

ABSTRACT

Colorectal cancer (CRC) is one of the most frequently diagnosed tumor in humans and one of the most common causes of cancer-related death worldwide. The pathogenesis of CRC follows a multistage process which together with somatic gene mutations is mainly attributed to the dysregulation of signaling pathways critically involved in the maintenance of homeostasis of epithelial integrity in the intestine. A growing number of studies has highlighted the critical impact of members of the tripartite motif (TRIM) protein family on most types of human malignancies including CRC. In accordance, abundant expression of many TRIM proteins has been observed in CRC tissues and is frequently correlating with poor survival of patients. Notably, some TRIM members can act as tumor suppressors depending on the context and the type of cancer which has been assessed. Mechanistically, most cancer-related TRIMs have a critical impact on cell cycle control, apoptosis, epithelial-mesenchymal transition (EMT), metastasis, and inflammation mainly through directly interfering with diverse oncogenic signaling pathways. In addition, some recent publications have emphasized the emerging role of some TRIM members to act as transcription factors and RNA-stabilizing factors thus adding a further level of complexity to the pleiotropic biological activities of TRIM proteins. The current review focuses on oncogenic signaling processes targeted by different TRIMs and their particular role in the development of CRC. A better understanding of the crosstalk of TRIMs with these signaling pathways relevant for CRC development is an important prerequisite for the validation of TRIM proteins as novel biomarkers and as potential targets of future therapies for CRC.


Subject(s)
Carcinoma/metabolism , Colorectal Neoplasms/metabolism , Tripartite Motif Proteins/metabolism , Animals , Apoptosis , Carcinoma/pathology , Colorectal Neoplasms/pathology , Epithelial-Mesenchymal Transition , Humans , Tripartite Motif Proteins/genetics
3.
Cells ; 8(12)2019 12 12.
Article in English | MEDLINE | ID: mdl-31842382

ABSTRACT

Colorectal cancer (CRC) is one of the most common cancers that is characterized by a high mortality due to the strong metastatic potential of the primary tumor and the high rate of therapy resistance. Hereby, evasion of apoptosis is the primary underlying cause of reduced sensitivity of tumor cells to chemo- and radiotherapy. Using RNA affinity chromatography, we identified the tripartite motif-containing protein 25 (TRIM25) as a bona fide caspase-2 mRNA-binding protein in colon carcinoma cells. Loss-of-function and gain-of-function approaches revealed that TRIM25 attenuates the protein levels of caspase-2 without significantly affecting caspase-2 mRNA levels. In addition, experiments with cycloheximide revealed that TRIM25 does not affect the protein stability of caspase-2. Furthermore, silencing of TRIM25 induced a significant redistribution of caspase-2 transcripts from RNP particles to translational active polysomes, indicating that TRIM25 negatively interferes with caspase-2 translation. Functionally, the elevation in caspase-2 upon TRIM25 depletion significantly increased the sensitivity of colorectal cells to drug-induced intrinsic apoptosis as implicated by increased caspase-3 cleavage and cytochrome c release. Importantly, the apoptosis-sensitizing effects by transient TRIM25 knockdown were rescued by concomitant silencing of caspase-2, demonstrating a critical role of caspase-2. Inhibition of caspase-2 by TRIM25 implies a survival mechanism that critically contributes to chemotherapeutic drug resistance in CRC.


Subject(s)
Caspase 2/genetics , Caspase 2/metabolism , Colonic Neoplasms/metabolism , Cysteine Endopeptidases/genetics , Cysteine Endopeptidases/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Antineoplastic Agents/pharmacology , Caspase 2/chemistry , Cell Line, Tumor , Cell Survival/drug effects , Colonic Neoplasms/drug therapy , Colonic Neoplasms/genetics , Cycloheximide/pharmacology , Cysteine Endopeptidases/chemistry , Dactinomycin/pharmacology , Doxorubicin/pharmacology , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , HEK293 Cells , Humans , Loss of Function Mutation , Protein Stability , Sirolimus/pharmacology
4.
Cells ; 8(8)2019 07 30.
Article in English | MEDLINE | ID: mdl-31366165

ABSTRACT

An increased expression and cytoplasmic abundance of the ubiquitous RNA binding protein human antigen R (HuR) is critically implicated in the dysregulated control of post- transcriptional gene expression during colorectal cancer development and is frequently associated with a high grade of malignancy and therapy resistance. Regardless of the fact that HuR elicits a broad cell survival program by increasing the stability of mRNAs coding for prominent anti-apoptotic factors, recent data suggest that HuR is critically involved in the regulation of translation, particularly, in the internal ribosome entry site (IRES) controlled translation of cell death regulatory proteins. Accordingly, data from human colon carcinoma cells revealed that HuR maintains constitutively reduced protein and activity levels of caspase-2 through negative interference with IRES-mediated translation. This review covers recent advances in the understanding of mechanisms underlying HuR's modulatory activity on IRES-triggered translation. With respect to the unique regulatory features of caspase-2 and its multiple roles (e.g., in DNA-damage-induced apoptosis, cell cycle regulation and maintenance of genomic stability), the pathophysiological consequences of negative caspase-2 regulation by HuR and its impact on therapy resistance of colorectal cancers will be discussed in detail. The negative HuR-caspase-2 axis may offer a novel target for tumor sensitizing therapies.


Subject(s)
Caspase 2/genetics , Colonic Neoplasms/genetics , Cysteine Endopeptidases/genetics , Drug Resistance, Neoplasm , ELAV-Like Protein 1/metabolism , Cell Survival , Humans , Protein Biosynthesis , RNA Stability , RNA, Messenger/chemistry
5.
Malar J ; 18(1): 22, 2019 Jan 25.
Article in English | MEDLINE | ID: mdl-30683097

ABSTRACT

BACKGROUND: Since malaria parasites highly depend on ribose 5-phosphate for DNA and RNA synthesis and on NADPH as a source of reducing equivalents, the pentose phosphate pathway (PPP) is considered an excellent anti-malarial drug target. In Plasmodium, a bifunctional enzyme named glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase (GluPho) catalyzes the first two steps of the PPP. PfGluPho has been shown to be essential for the growth of blood stage Plasmodium falciparum parasites. METHODS: Plasmodium vivax glucose 6-phosphate dehydrogenase (PvG6PD) was cloned, recombinantly produced in Escherichia coli, purified, and characterized via enzyme kinetics and inhibitor studies. The effects of post-translational cysteine modifications were assessed via western blotting and enzyme activity assays. Genetically encoded probes were employed to study the effects of G6PD inhibitors on the cytosolic redox potential of Plasmodium. RESULTS: Here the recombinant production and characterization of PvG6PD, the C-terminal and NADPH-producing part of PvGluPho, is described. A comparison with PfG6PD (the NADPH-producing part of PfGluPho) indicates that the P. vivax enzyme has higher KM values for the substrate and cofactor. Like the P. falciparum enzyme, PvG6PD is hardly affected by S-glutathionylation and moderately by S-nitrosation. Since there are several naturally occurring variants of PfGluPho, the impact of these mutations on the kinetic properties of the enzyme was analysed. Notably, in contrast to many human G6PD variants, the mutations resulted in only minor changes in enzyme activity. Moreover, nanomolar IC50 values of several compounds were determined on P. vivax G6PD (including ellagic acid, flavellagic acid, and coruleoellagic acid), inhibitors that had been previously characterized on PfGluPho. ML304, a recently developed PfGluPho inhibitor, was verified to also be active on PvG6PD. Using genetically encoded probes, ML304 was confirmed to disturb the cytosolic glutathione-dependent redox potential of P. falciparum blood stage parasites. Finally, a new series of novel small molecules with the potential to inhibit the falciparum and vivax enzymes were synthesized, resulting in two compounds with nanomolar activity. CONCLUSION: The characterization of PvG6PD makes this enzyme accessible to further drug discovery activities. In contrast to naturally occurring G6PD variants in the human host that can alter the kinetic properties of the enzyme and thus the redox homeostasis of the cells, the naturally occurring PfGluPho variants studied here are unlikely to have a major impact on the parasites' redox homeostasis. Several classes of inhibitors have been successfully tested and are presently being followed up.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Glucosephosphate Dehydrogenase/genetics , Malaria, Vivax/genetics , Multienzyme Complexes/genetics , Protozoan Proteins/genetics , Carboxylic Ester Hydrolases/metabolism , Cloning, Molecular , Cytosol/metabolism , Escherichia coli/metabolism , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Glucosephosphate Dehydrogenase/metabolism , Kinetics , Malaria, Vivax/enzymology , Malaria, Vivax/metabolism , Multienzyme Complexes/metabolism , Oxidation-Reduction , Protozoan Proteins/metabolism , Recombinant Proteins/genetics , Recombinant Proteins/metabolism
6.
J Mol Biol ; 430(21): 4049-4067, 2018 10 19.
Article in English | MEDLINE | ID: mdl-30098336

ABSTRACT

The enzyme 6-phosphogluconate dehydrogenase (6PGD) of the malaria parasite Plasmodium falciparum catalyzes the third step of the pentose phosphate pathway converting 6-phosphogluconate (6PG) to ribulose 5-phosphate. The NADPH produced by 6PGD is crucial for antioxidant defense and redox regulation, and ribose 5-phosphate is essential for DNA and RNA synthesis in the rapidly growing parasite. Thus, 6PGD represents an attractive antimalarial drug target. In this study, we present the X-ray structures of Pf6PGD in native form as well as in complex with 6PG or nicotinamide adenine dinucleotide phosphate (NADP+) at resolutions of 2.8, 1.9, and 2.9 Å, respectively. The overall structure of the protein is similar to structures of 6PGDs from other species; however, a flexible loop close to the active site rearranges upon binding of 6PG and likely regulates the conformation of the cofactor NADP+. Upon binding of 6PG, the active site loop adopts a closed conformation. In the absence of 6PG, the loop opens and NADP+ is bound in a waiting position, indicating that the cofactor and 6PG bind independently from each other. This sequential binding mechanism was supported by kinetic studies on the homodimeric wild-type Pf6PGD. Furthermore, the function of the Plasmodium-specific residue W104L mutant was characterized by site-directed mutagenesis. Notably, the activity of Pf6PGD was found to be post-translationally redox regulated via S-nitrosylation, and screening the Medicines for Malaria Venture Malaria Box identified several compounds with IC50s in the low micromolar range. Together with the three-dimensional structure of the protein, this is a promising starting point for further drug discovery approaches.


Subject(s)
Antimalarials/chemistry , Enzyme Inhibitors/chemistry , Phosphogluconate Dehydrogenase/chemistry , Plasmodium falciparum/enzymology , Amino Acid Sequence , Antimalarials/pharmacology , Binding Sites , Enzyme Inhibitors/pharmacology , Humans , Kinetics , Mechanical Phenomena , Models, Molecular , Molecular Conformation , Phosphogluconate Dehydrogenase/antagonists & inhibitors , Phosphogluconate Dehydrogenase/metabolism , Plasmodium falciparum/drug effects , Protein Binding , Recombinant Proteins , Structure-Activity Relationship , Substrate Specificity
7.
FEBS J ; 282(19): 3808-23, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26198663

ABSTRACT

The malarial parasite Plasmodium falciparum is exposed to substantial redox challenges during its complex life cycle. In intraerythrocytic parasites, haemoglobin breakdown is a major source of reactive oxygen species. Deficiencies in human glucose-6-phosphate dehydrogenase, the initial enzyme in the pentose phosphate pathway (PPP), lead to a disturbed redox equilibrium in infected erythrocytes and partial protection against severe malaria. In P. falciparum, the first two reactions of the PPP are catalysed by the bifunctional enzyme glucose-6-phosphate dehydrogenase 6-phosphogluconolactonase (PfGluPho). This enzyme differs structurally from its human counterparts and represents a potential target for drugs. In the present study we used epitope tagging of endogenous PfGluPho to verify that the enzyme localises to the parasite cytosol. Furthermore, attempted double crossover disruption of the PfGluPho gene indicates that the enzyme is essential for the growth of blood stage parasites. As a further step towards targeting PfGluPho pharmacologically, ellagic acid was characterised as a potent PfGluPho inhibitor with an IC50 of 76 nM. Interestingly, pro-oxidative drugs or treatment of the parasites with H2O2 only slightly altered PfGluPho expression or activity under the conditions tested. Furthermore, metabolic profiling suggested that pro-oxidative drugs do not significantly perturb the abundance of PPP intermediates. These data indicate that PfGluPho is essential in asexual parasites, but that the oxidative arm of the PPP is not strongly regulated in response to oxidative challenge.


Subject(s)
Antimalarials/pharmacology , Carboxylic Ester Hydrolases/metabolism , Ellagic Acid/pharmacology , Glucosephosphate Dehydrogenase/metabolism , Multienzyme Complexes/metabolism , Plasmodium falciparum/drug effects , Antimalarials/chemistry , Blood/parasitology , Carboxylic Ester Hydrolases/antagonists & inhibitors , Cytosol/enzymology , Ellagic Acid/chemistry , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Gene Knockout Techniques , Glucose/metabolism , Glucosephosphate Dehydrogenase/antagonists & inhibitors , Humans , Hydrogen Peroxide/pharmacology , Inhibitory Concentration 50 , Molecular Docking Simulation , Molecular Targeted Therapy , Multienzyme Complexes/antagonists & inhibitors , Oxidative Stress , Plasmodium falciparum/enzymology , Plasmodium falciparum/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...