Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Food Sci ; 89(4): 1988-2000, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38372192

ABSTRACT

Romaine lettuce outer leaves, as opposed to the more commonly marketed heart, are typically discarded and present an opportunity for upcycling as dried powders. Duquesne Romaine lettuce was evaluated to quantify and compare quality attributes of fresh outer and heart leaves, dried powders following hot air drying, and dried powders following an infrared (IR) blanching pretreatment before drying. Attributes measured for fresh leaves included moisture, water activity (Aw), color, total soluble phenolics (TSP), and antioxidant capacity (AC). Drying kinetics and time/energy saving through IR blanching were evaluated. Attributes measured for dried powders included moisture, Aw, color, true density, water vapor isotherms, TSP, AC, cadmium (Cd) content, and pesticide residues. TSP, AC, Cd, and pesticide residues were higher, whereas moisture content and Aw were lower in fresh outer versus heart leaves. Hot air drying reduced TSP and AC to 63.6% and 35.2% of fresh values, respectively, whereas IR blanching further reduced TSP and AC to 37.3% and 25.4% in outer leave powders. On the other hand, TSP and AC increased 237% and 151%, respectively, for unblanched heart powders. Higher increase of TSP than AC in heart leaf powder may indicate synthesis of phenolic compounds activated by abiotic stresses such as cutting and high temperatures at the initial drying stage. IR blanching resulted in significant time/energy savings for drying of outer leaves. Microbial loads were substantially reduced during drying, although microbial population on outer leaves were more resistant. Safe to eat outer leaf Romaine lettuce powders can be produced, assuming appropriate agricultural practices.


Subject(s)
Lactuca , Pesticide Residues , Cadmium/analysis , Pesticide Residues/analysis , Antioxidants/chemistry , Desiccation/methods , Plant Leaves/chemistry
2.
Food Chem ; 355: 129514, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33774225

ABSTRACT

The gluten protein found in a variety of cereal grains is a food allergen that can elicit a spectrum of immuno-inflammatory responses in people. Consumer awareness has prompted changes in food labeling requirements, expanded gluten-free food product availability and increased demand for effective gluten testing methodologies. To meet the challenges associated with gluten testing from diverse and complex foods we developed a lateral flow immunoassay (LFIA) using a pair of novel gliadin monoclonal antibodies (MAbs). Using a visual gold reporter, we show sensitive gluten detection (150 ng/mL) from complex food substrates using a fast (<5 min) and easy testing methodology. In this report we characterize the binding properties of a cohort of newly generated gliadin monoclonal antibodies suitable for gluten detection using multiple assay formats and introduce a novel plug-n-play test strip platform with integrated test components in a single-use format.


Subject(s)
Food Analysis/methods , Glutens/analysis , Immunoassay/methods , Limit of Detection , Antibodies, Monoclonal/immunology , Food Labeling , Gliadin/immunology , Glutens/immunology , Gold/chemistry , Humans , Time Factors
3.
Sci Rep ; 9(1): 2016, 2019 02 14.
Article in English | MEDLINE | ID: mdl-30765894

ABSTRACT

Two natural compounds (quercetin and curcumin) were tested as sensitizing or protecting agents for Navel Orangeworm (NOW) larvae under x-ray sterilization, with the aim to reduce required doses and thus facilitate the substitution of x-ray for radioisotopes. The compounds were added to NOW diet at concentrations between 0 and 1.0 mmol kg-1 and subsequent reared male larvae were subjected to x-ray irradiation (90 keV, 9 mA) to doses up to 15 Gy. Upon emergence as adults, surviving male NOW were paired with colony virgin females and placed in isolation for observation of deformity, mortality, and fertility. Treatments included rearing larvae on infused diet before irradiation, after irradiation, and both. Results were tabulated as percentage of insects that were dead/deformed, infertile, or fertile and subjected to chi-squared analysis. While insect populations subjected to quercetin treatments were not found to be significantly different from control at any x-ray dose, all curcumin treatments yielded significant differences at an absorbed dose of 10 Gy, both in terms of decreased mortality and fertility. While none of the treatments resulted in acceptable mortality/deformity rates, the observed effects strongly support the need for continued testing of natural compounds for their efficacy to reduce required dose levels for sterilization.


Subject(s)
Curcumin/pharmacology , Larva/drug effects , Larva/radiation effects , Moths , Quercetin/pharmacology , Radiation-Sensitizing Agents/pharmacology , Sterilization , Animals , Male , Radiation-Protective Agents/pharmacology , X-Rays
4.
Environ Entomol ; 46(2): 319-327, 2017 04 01.
Article in English | MEDLINE | ID: mdl-28158529

ABSTRACT

We evaluated the low-density application of 50 dispensers per hectare, in contrast to the traditional >800 dispensers per hectare in apple orchards, to achieve disruption of communication of adult codling moth, Cydia pomonella (L.), in walnuts, Juglans regia (L.), using several methods. These methods included cumulative catches of male moths in traps baited with sex pheromone (Ph) or codlemone, (E,E)-8,10-dodecadien-1-ol, or a combination of codlemone, pear ester (PE), ethyl (E,Z)-2,4-decadienoate, and acetic acid, and by examining the mating status of females. These data were collected from 2011-2014 in nontreated plots and in similar plots treated with Meso dispensers loaded with codlemone (Ph Meso) or codlemone and PE (Ph + PE Meso). Male moth captures in both the Ph and combination lure traps reduced by 88-96% and 72 to 77%, respectively, compared with traps in the nontreated plots. A significantly higher proportion of female moths were nonmated in plots treated with Ph + PE Meso dispensers (33%) than in plots treated with Ph Meso (18-26%), or left nontreated (13%). In addition, significantly fewer multiple-mated females were trapped in the Ph + PE Meso-treated plots (6%) than in either Ph Meso-treated (13-18%) or nontreated plots (23%). These data suggest that the addition of PE can effectively improve Ph-based disruption of C. pomonella in walnut orchards. In addition, these data suggest that the use of low-density hand-applied dispensers can be an effective and lower-cost approach to manage this pest in the large canopy presented by walnut orchards.


Subject(s)
Decanoates/pharmacology , Dodecanol/analogs & derivatives , Moths/physiology , Pest Control, Biological , Sex Attractants/pharmacology , Sexual Behavior, Animal/drug effects , Animals , California , Dodecanol/pharmacology , Female , Juglans/growth & development , Male , Seasons
5.
J Econ Entomol ; 108(5): 2200-12, 2015 10.
Article in English | MEDLINE | ID: mdl-26453709

ABSTRACT

Male adult navel orangeworm, Amyelois transitella (Walker), were irradiated using a laboratory scale x-ray irradiation unit to determine the required dose for complete egg sterility of mated female moths and inherited sterility of F1 and F2 generations. Adult male A. transitella were irradiated in two separate experiments at 100-300 Gy and 50-175 Gy. Mating frequency, fecundity, and fertility of normal females crossed with irradiated parental males was compared with the mating of nonirradiated moths. Mating frequency was 100% for females crossed with nonirradiated control males. At male treatment doses of ≥150 Gy the percentage of females found unmated increased, while multiple-mated females decreased. Female fecundity was not affected while fertility was affected in a dose-dependent relationship to exposure of parental males to x-ray irradiation. Embryonic development of eggs to the prehatch stage and egg eclosion did not occur at radiation doses ≥125 Gy. Emergence of F1 adults was low and occurred only for progeny of parental males exposed to doses ≤100 Gy, with no emergence at ≥125 Gy. Though fecundity appeared similar for control and irradiated F1 females, no F2 eggs hatched for the test exposures of 50-100 Gy. Based on our results, a dose of ≥125 Gy had efficacy in inducing both primary parental sterility in treated male moths and inherited sterility in F1 male and female moths. Results suggest that A. transitella might be considered a candidate for the sterile insect technique using adults irradiated at these relatively low x-ray exposure doses.


Subject(s)
Fertility/radiation effects , Insect Control/methods , Moths/radiation effects , Sexual Behavior, Animal/radiation effects , X-Rays/adverse effects , Animals , Dose-Response Relationship, Radiation , Male
6.
Front Microbiol ; 5: 87, 2014.
Article in English | MEDLINE | ID: mdl-24639673

ABSTRACT

The aim of this study was to examine two benzo analogs, octylgallate (OG) and veratraldehyde (VT), as antifungal agents against strains of Aspergillus parasiticus and A.flavus (toxigenic or atoxigenic). Both toxigenic and atoxigenic strains used were capable of producing kojic acid, another cellular secondary product. A. fumigatus was used as a genetic model for this study. When applied independently, OG exhibits considerably higher antifungal activity compared to VT. The minimum inhibitory concentrations (MICs) of OG were 0.3-0.5 mM, while that of VT were 3.0-5.0 mM in agar plate-bioassays. OG or VT in concert with the fungicide kresoxim methyl (Kre-Me; strobilurin) greatly enhanced sensitivity of Aspergillus strains to Kre-Me. The combination with OG also overcame the tolerance of A. fumigatus mitogen-activated protein kinase (MAPK) mutants to Kre-Me. The degree of compound interaction resulting from chemosensitization of the fungi by OG was determined using checkerboard bioassays, where synergistic activity greatly lowered MICs or minimum fungicidal concentrations. However, the control chemosensitizer benzohydroxamic acid, an alternative oxidase inhibitor conventionally applied in concert with strobilurin, did not achieve synergism. The level of antifungal or chemosensitizing activity was also "compound-strain" specific, indicating differential susceptibility of tested strains to OG or VT, and/or heat stress. Besides targeting the antioxidant system, OG also negatively affected the cell wall-integrity pathway, as determined by the inhibition of Saccharomyces cerevisiae cell wall-integrity MAPK pathway mutants. We concluded that certain benzo analogs effectively inhibit fungal growth. They possess chemosensitizing capability to increase efficacy of Kre-Me and thus, could reduce effective dosages of strobilurins and alleviate negative side effects associated with current antifungal practices. OG also exhibits moderate antiaflatoxigenic activity.

7.
Molecules ; 18(8): 8873-94, 2013 Jul 25.
Article in English | MEDLINE | ID: mdl-23892633

ABSTRACT

Enhanced control of species of Cryptococcus, non-fermentative yeast pathogens, was achieved by chemosensitization through co-application of certain compounds with a conventional antimicrobial drug. The species of Cryptococcus tested showed higher sensitivity to mitochondrial respiratory chain (MRC) inhibition compared to species of Candida. This higher sensitivity results from the inability of Cryptococcus to generate cellular energy through fermentation. To heighten disruption of cellular MRC, octyl gallate (OG) or 2,3-dihydroxybenzaldehyde (2,3-DHBA), phenolic compounds inhibiting mitochondrial functions, were selected as chemosensitizers to pyraclostrobin (PCS; an inhibitor of complex III of MRC). The cryptococci were more susceptible to the chemosensitization (i.e., PCS + OG or 2,3-DHBA) than the Candida with all Cryptococcus strains tested being sensitive to this chemosensitization. Alternatively, only few of the Candida strains showed sensitivity. OG possessed higher chemosensitizing potency than 2,3-DHBA, where the concentration of OG required with the drug to achieve chemosensitizing synergism was much lower than that required of 2,3-DHBA. Bioassays with gene deletion mutants of the model yeast Saccharomyces cerevisiae showed that OG or 2,3-DHBA affect different cellular targets. These assays revealed mitochondrial superoxide dismutase or glutathione homeostasis plays a relatively greater role in fungal tolerance to 2,3-DHBA or OG, respectively. These findings show that application of chemosensitizing compounds that augment MRC debilitation is a promising strategy to antifungal control against yeast pathogens.


Subject(s)
Antifungal Agents/pharmacology , Candida/pathogenicity , Cryptococcus/drug effects , Mitochondria/metabolism , Benzaldehydes/pharmacology , Candida/growth & development , Candida/metabolism , Catechols/pharmacology , Electron Transport/drug effects , Energy Metabolism/drug effects , Fermentation , Microbial Sensitivity Tests , Phenols/metabolism
8.
Molecules ; 18(2): 1564-81, 2013 Jan 25.
Article in English | MEDLINE | ID: mdl-23353126

ABSTRACT

Co-application of certain types of compounds to conventional antimicrobial drugs can enhance the efficacy of the drugs through a process termed chemosensitization. We show that kojic acid (KA), a natural pyrone, is a potent chemosensitizing agent of complex III inhibitors disrupting the mitochondrial respiratory chain in fungi. Addition of KA greatly lowered the minimum inhibitory concentrations of complex III inhibitors tested against certain filamentous fungi. Efficacy of KA synergism in decreasing order was pyraclostrobin > kresoxim-methyl > antimycin A. KA was also found to be a chemosensitizer of cells to hydrogen peroxide (H2O2), tested as a mimic of reactive oxygen species involved in host defense during infection, against several human fungal pathogens and Penicillium strains infecting crops. In comparison, KA-mediated chemosensitization to complex III inhibitors/H2O2 was undetectable in other types of fungi, including Aspergillus flavus, A. parasiticus, and P. griseofulvum, among others. Of note, KA was found to function as an antioxidant, but not as an antifungal chemosensitizer in yeasts. In summary, KA could serve as an antifungal chemosensitizer to complex III inhibitors or H2O2 against selected human pathogens or Penicillium species. KA-mediated chemosensitization to H2O2 seemed specific for filamentous fungi. Thus, results indicate strain- and/or drug-specificity exist during KA chemosensitization.


Subject(s)
Antifungal Agents/pharmacology , Mitochondria/drug effects , Pyrones/pharmacology , Aerobiosis/drug effects , Antifungal Agents/chemistry , Antimycin A/chemistry , Antimycin A/pharmacology , Antioxidants/pharmacology , Biological Assay , Carbamates/chemistry , Carbamates/pharmacology , Cell Respiration/drug effects , Drug Synergism , Electron Transport Complex III/antagonists & inhibitors , Electron Transport Complex III/metabolism , Fungi/drug effects , Humans , Hydrogen Peroxide/pharmacology , Methacrylates/chemistry , Methacrylates/pharmacology , Microbial Sensitivity Tests , Mitochondria/metabolism , Mutation/genetics , Phenylacetates/chemistry , Phenylacetates/pharmacology , Pyrazoles/chemistry , Pyrazoles/pharmacology , Pyrones/chemistry , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/genetics , Strobilurins
SELECTION OF CITATIONS
SEARCH DETAIL
...