Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Geophys Res Lett ; 49(15): e2022GL098712, 2022 Aug 16.
Article in English | MEDLINE | ID: mdl-36247521

ABSTRACT

NASA satellite measurements show that ozone reductions throughout the Northern Hemisphere (NH) free troposphere reported for spring-summer 2020 during the COronaVIrus Disease 2019 pandemic have occurred again in spring-summer 2021. The satellite measurements show that tropospheric column ozone (TCO) (mostly representative of the free troposphere) for 20°N-60°N during spring-summer for both 2020 and 2021 averaged ∼3 Dobson Units (DU) (or ∼7%-8%) below normal. These ozone reductions in 2020 and 2021 were the lowest in the 2005-2021 record. We also include satellite measurements of tropospheric NO2 that exhibit reductions of ∼10%-20% in the NH in early spring-to-summer 2020 and 2021, suggesting that reduced pollution was the main cause for the low anomalies in NH TCO in 2020 and 2021. Reductions of TCO ∼2 DU (7%) are also measured in the Southern Hemisphere in austral summer but are not associated with reduced NO2.

2.
Atmos Meas Tech ; 10(11): 4067-4078, 2017.
Article in English | MEDLINE | ID: mdl-29456762

ABSTRACT

Ozone within deep convective clouds is controlled by several factors involving photochemical reactions and transport. Gas-phase photochemical reactions and heterogeneous surface chemical reactions involving ice, water particles, and aerosols inside the clouds all contribute to the distribution and net production and loss of ozone. Ozone in clouds is also dependent on convective transport that carries low troposphere/boundary layer ozone and ozone precursors upward into the clouds. Characterizing ozone in thick clouds is an important step for quantifying relationships of ozone with tropospheric H2O, OH production, and cloud microphysics/transport properties. Although measuring ozone in deep convective clouds from either aircraft or balloon ozonesondes is largely impossible due to extreme meteorological conditions associated with these clouds, it is possible to estimate ozone in thick clouds using backscattered solar UV radiation measured by satellite instruments. Our study combines Aura Ozone Monitoring Instrument (OMI) and Microwave Limb Sounder (MLS) satellite measurements to generate a new research product of monthly-mean ozone concentrations in deep convective clouds between 30°S to 30°N for October 2004 - April 2016. These measurements represent mean ozone concentration primarily in the upper levels of thick clouds and reveal key features of cloud ozone including: persistent low ozone concentrations in the tropical Pacific of ~10 ppbv or less; concentrations of up to 60 pphv or greater over landmass regions of South America, southern Africa, Australia, and India/east Asia; connections with tropical ENSO events; and intra-seasonal/Madden-Julian Oscillation variability. Analysis of OMI aerosol measurements suggests a cause and effect relation between boundary layer pollution and elevated ozone inside thick clouds over land-mass regions including southern Africa and India/east Asia.

3.
Nature ; 478(7370): 469-75, 2011 Oct 02.
Article in English | MEDLINE | ID: mdl-21964337

ABSTRACT

Chemical ozone destruction occurs over both polar regions in local winter-spring. In the Antarctic, essentially complete removal of lower-stratospheric ozone currently results in an ozone hole every year, whereas in the Arctic, ozone loss is highly variable and has until now been much more limited. Here we demonstrate that chemical ozone destruction over the Arctic in early 2011 was--for the first time in the observational record--comparable to that in the Antarctic ozone hole. Unusually long-lasting cold conditions in the Arctic lower stratosphere led to persistent enhancement in ozone-destroying forms of chlorine and to unprecedented ozone loss, which exceeded 80 per cent over 18-20 kilometres altitude. Our results show that Arctic ozone holes are possible even with temperatures much milder than those in the Antarctic. We cannot at present predict when such severe Arctic ozone depletion may be matched or exceeded.


Subject(s)
Atmosphere/chemistry , Environmental Monitoring , Ozone/analysis , Antarctic Regions , Arctic Regions , Chlorine/chemistry , History, 20th Century , History, 21st Century , Ozone/chemistry , Ozone/history , Seasons , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...