Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Biol Macromol ; 250: 126295, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37573912

ABSTRACT

This study is focused on developing and enhancing the properties of durian peel fiber (DPF) reinforced thermoplastic cassava starch (TPCS) composites. The proposed DPF was extracted from agro-waste and incorporated into TPCS with various contents of DPF (10, 20, 30, 40, and 50 wt%) via compression molding. The mechanical and thermal characteristics of the fabricated composites were studied. The thermal properties of the biocomposite were improved with the addition of DPF, as evidenced by an increase in the material's thermal stability and indicated by a higher onset decomposition temperature. The integration of DPF into TPCS improved the biodegradation rate process of the composites. Besides, the results indicated that incorporating DPF in TPCS composites enhanced tensile and flexural properties, with a 40 wt% DPF content exhibited the highest modulus and strength. The tensile and flexural strengths of TPCS/DPF composites were raised significantly from 2.96 to 21.89 MPa and 2.5 to 35.0 MPa, respectively, compared to the control TPCS sample, as DPF increased from 0 to 40 wt%. This finding was consistent with Fourier-Transform Infrared (FT-IR) spectroscopy and scanning electron micrograph (SEM), which showed good interaction between DPF and TPCS matrix. The analysis revealed that DPF at a 40 wt% ratio was the best composition compared to the other ratio. Finally, based on improved results, DPF was identified as a potential resource of green reinforcement for the biodegradable TPCS matrix.

2.
Int J Biol Macromol ; 194: 851-860, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34838853

ABSTRACT

Thermoplastic starch is a potentially sustainable and biodegradable material. However, it possesses some limitations in terms of mechanical performance and high moisture sensitivity. In this current work, the characteristics of thermoplastic cassava starch (TPCS) containing palm wax at various loading were evaluated. TPCS was prepared via hot pressing by varying the ratios of palm wax (2.5, 5, 10, and 15 wt%). Next, characterization via scanning electron microscopy (SEM), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier-transform infrared spectroscopy (FT-IR), mechanical, water solubility, thickness swelling and moisture absorption tests, were conducted on the samples. The findings showed that incorporating starch-based thermoplastics with palm wax has remarkably improved mechanical characteristics of the thermoplastic blends. Besides, the morphology of the samples demonstrated irregular and rougher cleavage fracture after palm wax addition. FT-IR indicated the existence of intermolecular interaction between TPCS and palm wax with the intermolecular hydrogen bonds that existed between them. The thermal stability of TPCS has improved with rising palm wax content. The incorporation of 15 wt% palm wax resulted in the lowest moisture absorption value among the samples. Overall, the developed TPCS/palm wax with improved mechanical and moisture resistance characteristics has the potential to be used as biodegradable materials.


Subject(s)
Chemical Phenomena , Manihot/chemistry , Mechanical Phenomena , Starch/chemistry , Waxes/chemistry , Calorimetry, Differential Scanning , Solubility , Spectrum Analysis , Starch/ultrastructure , Thermogravimetry
SELECTION OF CITATIONS
SEARCH DETAIL
...