Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 24(13)2023 Jun 22.
Article in English | MEDLINE | ID: mdl-37445666

ABSTRACT

Priming plants with beneficial microbes can establish rapid and robust resistance against numerous pathogens. Here, compelling evidence is provided that the treatment of rapeseed plants with Trichoderma harzianum OMG16 and Bacillus velezensis FZB42 induces defence activation against Verticillium longisporum infection. The relative expressions of the JA biosynthesis genes LOX2 and OPR3, the ET biosynthesis genes ACS2 and ACO4 and the SA biosynthesis and signalling genes ICS1 and PR1 were analysed separately in leaf, stem and root tissues using qRT-PCR. To successfully colonize rapeseed roots, the V. longisporum strain 43 pathogen suppressed the biosynthesis of JA, ET and SA hormones in non-primed plants. Priming led to fast and strong systemic responses of JA, ET and SA biosynthesis and signalling gene expression in each leaf, stem and root tissue. Moreover, the quantification of plant hormones via UHPLC-MS analysis revealed a 1.7- and 2.6-fold increase in endogenous JA and SA in shoots of primed plants, respectively. In roots, endogenous JA and SA levels increased up to 3.9- and 2.3-fold in Vl43-infected primed plants compared to non-primed plants, respectively. Taken together, these data indicate that microbial priming stimulates rapeseed defence responses against Verticillium infection and presumably transduces defence signals from the root to the upper parts of the plant via phytohormone signalling.


Subject(s)
Brassica napus , Verticillium , Plant Diseases/genetics , Brassica napus/genetics , Brassica napus/metabolism , Verticillium/physiology , Plant Growth Regulators , Gene Expression , Hormones , Gene Expression Regulation, Plant , Cyclopentanes/metabolism , Oxylipins/metabolism
2.
Int J Mol Sci ; 23(8)2022 Apr 07.
Article in English | MEDLINE | ID: mdl-35456909

ABSTRACT

Plant growth and crop yield highly depend on the availability of all required nutrients, ideally in well-balanced ratios [...].


Subject(s)
Plant Development , Plants , Chromatin , Nutrients , Nutritional Status , Plants/genetics
3.
Mol Plant Microbe Interact ; 35(5): 380-392, 2022 May.
Article in English | MEDLINE | ID: mdl-35147443

ABSTRACT

Rhizosphere-competent microbes often interact with plant roots and exhibit beneficial effects on plant performance. Numerous bacterial and fungal isolates are able to prime host plants for fast adaptive responses against pathogen attacks. Combined action of fungi and bacteria may lead to synergisms exceeding effects of single strains. Individual beneficial fungi and bacteria have been extensively studied in Arabidopsis thaliana, but little is known about their concerted actions in the Brassicaceae. Here, an in-vitro system with oilseed rape (Brassica napus) was established. Roots of two different cultivars were inoculated with well-characterized fungal (Trichoderma harzianum OMG16) and bacterial (Bacillus velezensis FZB42) isolates alone or in combination. Microscopic analysis confirmed that OMG16 hyphae entered root hairs through root hair tips and formed distinct intracellular structures. Quantitative PCR revealed that root colonization of OMG16 increased up to 10-fold in the presence of FZB42. Relative transcript levels of the ethylene- and jasmonic acid-responsive genes PDF1.2, ERF2, and AOC3 were recorded in leaves by quantitative reverse transcription PCR to measure induced systemic resistance in tissues distant from the roots. Combined action of OMG16 and FZB42 induced transcript abundances more efficiently than single inoculation. Importantly, microbial priming reduced Verticillium longisporum root infection in rapeseed by approximately 100-fold compared with nonprimed plants. Priming also led to faster and stronger systemic responses of the defense genes PDF1.2, ERF2, AOC3, and VSP2.[Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Subject(s)
Arabidopsis , Ascomycota , Bacillus , Brassica napus , Brassica rapa , Trichoderma , Verticillium , Arabidopsis/microbiology , Brassica napus/genetics , Plant Diseases/microbiology , Plant Roots/microbiology , Trichoderma/physiology , Verticillium/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...