Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1343917, 2024.
Article in English | MEDLINE | ID: mdl-38601925

ABSTRACT

Introduction: The influence of Wolbachia on mosquito reproduction and vector competence has led to renewed interest in studying the genetic diversity of these bacteria and the phenotypes they induced in mosquito vectors. In this study, we focused on two species of Eretmapodites, namely Eretmapodites quinquevittatus and Eretmapodites subsimplicipes, from three islands in the Comoros archipelago (in the Southwestern Indian Ocean). Methods: Using the COI gene, we examined the mitochondrial genetic diversity of 879 Eretmapodites individuals from 54 sites. Additionally, we investigated the presence and genetic diversity of Wolbachia using the wsp marker and the diversity of five housekeeping genes commonly used for genotyping through Multiple Locus Sequence Typing (MLST). Results and discussion: Overall, Er. quinquevittatus was the most abundant species in the three surveyed islands and both mosquito species occurred in sympatry in most of the investigated sites. We detected a higher mitochondrial genetic diversity in Er. quinquevittatus with 35 reported haplotypes (N = 615 specimens, Hd = 0.481 and π = 0.002) while 13 haplotypes were found in Er. subsimplicipes (N = 205 specimens, Hd = 0.338 and π = 0.001), this difference is likely due to the bias in sampling size between the two species. We report for the first time the presence of Wolbachia in these two Eretmapodites species. The prevalence of Wolbachia infection varied significantly between species, with a low prevalence recorded in Er. quinquevittatus (0.8%, N = 5/627) while infection was close to fixation in Er. subsimplicipes (87.7%, N = 221/252). Both male and female individuals of the two mosquito species appeared to be infected. The analysis of MLST genes revealed the presence of two Wolbachia strains corresponding to two new strain types (STs) within the supergroups A and B, which have been named wEretA and wEretB. These strains were found as mono-infections and are closely related, phylogenetically, to Wolbachia strains previously reported in Drosophila species. Finally, we demonstrate that maternal transmission of Wolbachia is imperfect in Er. subsimplicipes, which could explain the presence of a minority of uninfected individuals in the field.

2.
BMC Infect Dis ; 23(1): 294, 2023 May 05.
Article in English | MEDLINE | ID: mdl-37147570

ABSTRACT

BACKGROUND: An unprecedent increase in the number of cases and deaths reported from dengue virus (DENV) infection has occurred in the southwestern Indian ocean in recent years. From 2017 to mid-2021 more than 70,000 confirmed dengue cases were reported in Reunion Island, and 1967 cases were recorded in the Seychelles from 2015 to 2016. Both these outbreaks displayed similar trends, with the initial circulation of DENV-2 which was replaced by DENV-1. Here, we aim to determine the origin of the DENV-1 epidemic strains and to explore their genetic characteristics along the uninterrupted circulation, particularly in Reunion. METHODS: Nucleic acids were extracted from blood samples collected from dengue positive patients; DENV-1 was identified by RT-qPCR. Positive samples were used to infect VERO cells. Genome sequences were obtained from either blood samples or infected-cell supernatants through a combination of both Illumina or MinION technologies. RESULTS: Phylogenetic analyses of partial or whole genome sequences revealed that all DENV-1 sequences from Reunion formed a monophyletic cluster that belonged to genotype I and were closely related to one isolate from Sri Lanka (OL752439.1, 2020). Sequences from the Seychelles belonged to the same major phylogenetic branch of genotype V, but fell into two paraphyletic clusters, with greatest similarity for one cluster to 2016-2017 isolate from Bangladesh, Singapore and China, and for the other cluster to ancestral isolates from Singapore, dating back to 2012. Compared to publicly available DENV-1 genotype I sequences, fifteen non-synonymous mutations were identified in the Reunion strains, including one in the capsid and the others in nonstructural proteins (NS) (three in NS1, two in NS2B, one in NS3, one in NS4B, and seven in NS5). CONCLUSION: In contrast to what was seen in previous outbreaks, recent DENV-1 outbreaks in Reunion and the Seychelles were caused by distinct genotypes, all likely originating from Asia where dengue is (hyper)endemic in many countries. Epidemic DENV-1 strains from Reunion harbored specific non-synonymous mutations whose biological significance needs to be further investigated.


Subject(s)
Dengue Virus , Dengue , Animals , Chlorocebus aethiops , Humans , Dengue/epidemiology , Serogroup , Reunion/epidemiology , Phylogeny , Seychelles , Vero Cells , Disease Outbreaks , Genotype , Sri Lanka
3.
Viruses ; 15(3)2023 03 14.
Article in English | MEDLINE | ID: mdl-36992451

ABSTRACT

The number of dengue cases has increased dramatically over the past 20 years and is an important concern, particularly as the trends toward urbanization continue. While the majority of dengue cases are thought to be asymptomatic, it is unknown to what extent these contribute to transmission. A better understanding of their importance would help to guide control efforts. In 2019, a dengue outbreak in La Reunion resulted in more than 18,000 confirmed cases. Between October 2019 and August 2020, 19 clusters were investigated in the south, west, and east of the island, enabling the recruitment of 605 participants from 368 households within a 200 m radius of the home of the index cases (ICs). No active asymptomatic infections confirmed by RT-PCR were detected. Only 15% were possible asymptomatic dengue infections detected by the presence of anti-dengue IgM antibodies. Only 5.3% of the participants had a recent dengue infection confirmed by RT-PCR. Although the resurgence of dengue in La Réunion is very recent (2016), the rate of anti-dengue IgG positivity, a marker of past infections, was already high at 43% in this study. Dengue transmission was focal in time and space, as most cases were detected within a 100-m radius of the ICs, and within a time interval of less than 7 days between infections detected in a same cluster. No particular demographic or socio-cultural characteristics were associated with dengue infections. On the other hand, environmental risk factors such as type of housing or presence of rubbish in the streets were associated with dengue infections.


Subject(s)
Aedes , Dengue Virus , Animals , Humans , Reunion/epidemiology , Dengue Virus/genetics , Disease Outbreaks , Antibodies, Viral
4.
PLoS Negl Trop Dis ; 16(7): e0010547, 2022 07.
Article in English | MEDLINE | ID: mdl-35900991

ABSTRACT

BACKGROUND: Dengue is the world's most prevalent mosquito-borne viral disease. It is endemic in many tropical and subtropical countries and represents a significant global health burden. The first reports of dengue virus (DENV) circulation in the South West Indian Ocean (SWIO) islands date back to the early 1940s; however, an increase in DENV circulation has been reported in the SWIO in recent years. The aim of this review is to trace the history of DENV in the SWIO islands using available records from the Comoros, Madagascar, Mauritius, Mayotte, Seychelles, and Reunion. We focus in particular on the most extensive data from Reunion Island, highlighting factors that may explain the observed increasing incidence, and the potential shift from one-off outbreaks to endemic dengue transmission. METHODS: Following the PRISMA guidelines, the literature review focused queried different databases using the keywords "dengue" or "Aedes albopictus" combined with each of the following SWIO islands the Comoros, Madagascar, Mauritius, Mayotte, Seychelles, and Reunion. We also compiled case report data for dengue in Mayotte and Reunion in collaboration with the regional public health agencies in these French territories. References and data were discarded when original sources were not identified. We examined reports of climatic, anthropogenic, and mosquito-related factors that may influence the maintenance of dengue transmission independently of case importation linked to travel. FINDINGS AND CONCLUSIONS: The first report of dengue circulation in the SWIO was documented in 1943 in the Comoros. Then not until an outbreak in 1976 to 1977 that affected approximately 80% of the population of the Seychelles. DENV was also reported in 1977 to 1978 in Reunion with an estimate of nearly 30% of the population infected. In the following 40-year period, DENV circulation was qualified as interepidemic with sporadic cases. However, in recent years, the region has experienced uninterrupted DENV transmission at elevated incidence. Since 2017, Reunion witnessed the cocirculation of 3 serotypes (DENV-1, DENV-2 and DENV-3) and an increased number of cases with severe forms and deaths. Reinforced molecular and serological identification of DENV serotypes and genotypes circulating in the SWIO as well as vector control strategies is necessary to protect exposed human populations and limit the spread of dengue.


Subject(s)
Aedes , Mosquito Vectors , Animals , Disease Outbreaks , Humans , Indian Ocean , Reunion/epidemiology
5.
Microbiol Resour Announc ; 9(4)2020 Jan 23.
Article in English | MEDLINE | ID: mdl-31974157

ABSTRACT

Dengue virus has recently reemerged in the southern Indian Ocean islands, causing outbreaks in Reunion Island and the Seychelles. In the present study, we determined the complete genome sequences of closely related clinical isolates of dengue virus type 2 circulating in the Seychelles in 2016 and Reunion Island in 2018.

SELECTION OF CITATIONS
SEARCH DETAIL
...