Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Science ; 302(5652): 1967-9, 2003 Dec 12.
Article in English | MEDLINE | ID: mdl-14671304

ABSTRACT

The complete genome sequence of Geobacter sulfurreducens, a delta-proteobacterium, reveals unsuspected capabilities, including evidence of aerobic metabolism, one-carbon and complex carbon metabolism, motility, and chemotactic behavior. These characteristics, coupled with the possession of many two-component sensors and many c-type cytochromes, reveal an ability to create alternative, redundant, electron transport networks and offer insights into the process of metal ion reduction in subsurface environments. As well as playing roles in the global cycling of metals and carbon, this organism clearly has the potential for use in bioremediation of radioactive metals and in the generation of electricity.


Subject(s)
Genome, Bacterial , Geobacter/genetics , Geobacter/metabolism , Metals/metabolism , Acetates/metabolism , Acetyl Coenzyme A/metabolism , Aerobiosis , Anaerobiosis , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Carbon/metabolism , Chemotaxis , Chromosomes, Bacterial/genetics , Cytochromes c/genetics , Cytochromes c/metabolism , Electron Transport , Energy Metabolism , Genes, Bacterial , Genes, Regulator , Geobacter/physiology , Hydrogen/metabolism , Movement , Open Reading Frames , Oxidation-Reduction , Phylogeny
2.
Nucleic Acids Res ; 31(8): 2134-47, 2003 Apr 15.
Article in English | MEDLINE | ID: mdl-12682364

ABSTRACT

The genome of Chlamydophila caviae (formerly Chlamydia psittaci, GPIC isolate) (1 173 390 nt with a plasmid of 7966 nt) was determined, representing the fourth species with a complete genome sequence from the Chlamydiaceae family of obligate intracellular bacterial pathogens. Of 1009 annotated genes, 798 were conserved in all three other completed Chlamydiaceae genomes. The C.caviae genome contains 68 genes that lack orthologs in any other completed chlamydial genomes, including tryptophan and thiamine biosynthesis determinants and a ribose-phosphate pyrophosphokinase, the product of the prsA gene. Notable amongst these was a novel member of the virulence-associated invasin/intimin family (IIF) of Gram-negative bacteria. Intriguingly, two authentic frameshift mutations in the ORF indicate that this gene is not functional. Many of the unique genes are found in the replication termination region (RTR or plasticity zone), an area of frequent symmetrical inversion events around the replication terminus shown to be a hotspot for genome variation in previous genome sequencing studies. In C.caviae, the RTR includes several loci of particular interest including a large toxin gene and evidence of ancestral insertion(s) of a bacteriophage. This toxin gene, not present in Chlamydia pneumoniae, is a member of the YopT effector family of type III-secreted cysteine proteases. One gene cluster (guaBA-add) in the RTR is much more similar to orthologs in Chlamydia muridarum than those in the phylogenetically closest species C.pneumoniae, suggesting the possibility of horizontal transfer of genes between the rodent-associated Chlamydiae. With most genes observed in the other chlamydial genomes represented, C.caviae provides a good model for the Chlamydiaceae and a point of comparison against the human atherosclerosis-associated C.pneumoniae. This crucial addition to the set of completed Chlamydiaceae genome sequences is enabling dissection of the roles played by niche-specific genes in these important bacterial pathogens.


Subject(s)
Chlamydophila psittaci/genetics , Escherichia coli Proteins , Genome, Bacterial , Adhesins, Bacterial/genetics , Amino Acid Sequence , Carrier Proteins/genetics , Chlamydiaceae/genetics , Chromosomes, Bacterial/genetics , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Evolution, Molecular , Molecular Sequence Data , Plasmids/genetics , Sequence Analysis, DNA , Sequence Homology, Amino Acid , Virulence/genetics
3.
Science ; 293(5529): 498-506, 2001 Jul 20.
Article in English | MEDLINE | ID: mdl-11463916

ABSTRACT

The 2,160,837-base pair genome sequence of an isolate of Streptococcus pneumoniae, a Gram-positive pathogen that causes pneumonia, bacteremia, meningitis, and otitis media, contains 2236 predicted coding regions; of these, 1440 (64%) were assigned a biological role. Approximately 5% of the genome is composed of insertion sequences that may contribute to genome rearrangements through uptake of foreign DNA. Extracellular enzyme systems for the metabolism of polysaccharides and hexosamines provide a substantial source of carbon and nitrogen for S. pneumoniae and also damage host tissues and facilitate colonization. A motif identified within the signal peptide of proteins is potentially involved in targeting these proteins to the cell surface of low-guanine/cytosine (GC) Gram-positive species. Several surface-exposed proteins that may serve as potential vaccine candidates were identified. Comparative genome hybridization with DNA arrays revealed strain differences in S. pneumoniae that could contribute to differences in virulence and antigenicity.


Subject(s)
Genome, Bacterial , Sequence Analysis, DNA , Streptococcus pneumoniae/genetics , Streptococcus pneumoniae/pathogenicity , Antigens, Bacterial , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Vaccines , Base Composition , Carbohydrate Metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Chromosomes, Bacterial/genetics , Computational Biology , DNA Transposable Elements , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , Gene Duplication , Genes, Bacterial , Hexosamines/metabolism , Oligonucleotide Array Sequence Analysis , Recombination, Genetic , Repetitive Sequences, Nucleic Acid , Species Specificity , Streptococcus pneumoniae/immunology , Streptococcus pneumoniae/metabolism , Virulence , rRNA Operon
4.
Proc Natl Acad Sci U S A ; 98(7): 4136-41, 2001 Mar 27.
Article in English | MEDLINE | ID: mdl-11259647

ABSTRACT

The complete genome sequence of Caulobacter crescentus was determined to be 4,016,942 base pairs in a single circular chromosome encoding 3,767 genes. This organism, which grows in a dilute aquatic environment, coordinates the cell division cycle and multiple cell differentiation events. With the annotated genome sequence, a full description of the genetic network that controls bacterial differentiation, cell growth, and cell cycle progression is within reach. Two-component signal transduction proteins are known to play a significant role in cell cycle progression. Genome analysis revealed that the C. crescentus genome encodes a significantly higher number of these signaling proteins (105) than any bacterial genome sequenced thus far. Another regulatory mechanism involved in cell cycle progression is DNA methylation. The occurrence of the recognition sequence for an essential DNA methylating enzyme that is required for cell cycle regulation is severely limited and shows a bias to intergenic regions. The genome contains multiple clusters of genes encoding proteins essential for survival in a nutrient poor habitat. Included are those involved in chemotaxis, outer membrane channel function, degradation of aromatic ring compounds, and the breakdown of plant-derived carbon sources, in addition to many extracytoplasmic function sigma factors, providing the organism with the ability to respond to a wide range of environmental fluctuations. C. crescentus is, to our knowledge, the first free-living alpha-class proteobacterium to be sequenced and will serve as a foundation for exploring the biology of this group of bacteria, which includes the obligate endosymbiont and human pathogen Rickettsia prowazekii, the plant pathogen Agrobacterium tumefaciens, and the bovine and human pathogen Brucella abortus.


Subject(s)
Caulobacter crescentus/genetics , Genome, Bacterial , Adaptation, Biological/genetics , Cell Cycle/genetics , DNA Methylation , Dinucleotide Repeats , Molecular Sequence Data , Peptide Hydrolases/genetics , Phylogeny , Signal Transduction , Transcription, Genetic
5.
J Biol Chem ; 276(7): 5074-84, 2001 Feb 16.
Article in English | MEDLINE | ID: mdl-11085978

ABSTRACT

Sorting nexins are a family of phox homology domain containing proteins that are homologous to yeast proteins involved in protein trafficking. We have identified a novel 342-amino acid residue sorting nexin, SNX15, and a 252-amino acid splice variant, SNX15A. Unlike many sorting nexins, a SNX15 ortholog has not been identified in yeast or Caenorhabditis elegans. By Northern blot analysis, SNX15 mRNA is widely expressed. Although predicted to be a soluble protein, both endogenous and overexpressed SNX15 are found on membranes and in the cytosol. The phox homology domain of SNX15 is required for its membrane association and for association with the platelet-derived growth factor receptor. We did not detect association of SNX15 with receptors for epidermal growth factor or insulin. However, overexpression of SNX15 led to a decrease in the processing of insulin and hepatocyte growth factor receptors to their mature subunits. Immunofluorescence studies showed that SNX15 overexpression resulted in mislocalization of furin, the endoprotease responsible for cleavage of insulin and hepatocyte growth factor receptors. Based on our data and the existing findings with yeast orthologs of other sorting nexins, we propose that overexpression of SNX15 disrupts the normal trafficking of proteins from the plasma membrane to recycling endosomes or the trans-Golgi network.


Subject(s)
Carrier Proteins/genetics , Carrier Proteins/physiology , Endocytosis , Vesicular Transport Proteins , Amino Acid Sequence , Animals , Base Sequence , COS Cells , Carrier Proteins/biosynthesis , Carrier Proteins/metabolism , Molecular Sequence Data , Phylogeny , Platelet-Derived Growth Factor/metabolism , Protein Precursors/metabolism , Protein Processing, Post-Translational , Protein Structure, Tertiary , Protein Transport , RNA, Messenger/biosynthesis , Receptor Protein-Tyrosine Kinases/metabolism , Receptor, Insulin/metabolism , Receptors, Platelet-Derived Growth Factor/metabolism , Sorting Nexins , Tissue Distribution , Transfection
6.
Nucleic Acids Res ; 29(1): 41-3, 2001 Jan 01.
Article in English | MEDLINE | ID: mdl-11125044

ABSTRACT

TIGRFAMs is a collection of protein families featuring curated multiple sequence alignments, hidden Markov models and associated information designed to support the automated functional identification of proteins by sequence homology. We introduce the term 'equivalog' to describe members of a set of homologous proteins that are conserved with respect to function since their last common ancestor. Related proteins are grouped into equivalog families where possible, and otherwise into protein families with other hierarchically defined homology types. TIGRFAMs currently contains over 800 protein families, available for searching or downloading at www.tigr.org/TIGRFAMs. Classification by equivalog family, where achievable, complements classification by orthology, superfamily, domain or motif. It provides the information best suited for automatic assignment of specific functions to proteins from large-scale genome sequencing projects.


Subject(s)
Databases, Factual , Proteins , Internet , Phylogeny , Proteins/genetics , Sequence Alignment
7.
Nature ; 406(6795): 477-83, 2000 Aug 03.
Article in English | MEDLINE | ID: mdl-10952301

ABSTRACT

Here we determine the complete genomic sequence of the gram negative, gamma-Proteobacterium Vibrio cholerae El Tor N16961 to be 4,033,460 base pairs (bp). The genome consists of two circular chromosomes of 2,961,146 bp and 1,072,314 bp that together encode 3,885 open reading frames. The vast majority of recognizable genes for essential cell functions (such as DNA replication, transcription, translation and cell-wall biosynthesis) and pathogenicity (for example, toxins, surface antigens and adhesins) are located on the large chromosome. In contrast, the small chromosome contains a larger fraction (59%) of hypothetical genes compared with the large chromosome (42%), and also contains many more genes that appear to have origins other than the gamma-Proteobacteria. The small chromosome also carries a gene capture system (the integron island) and host 'addiction' genes that are typically found on plasmids; thus, the small chromosome may have originally been a megaplasmid that was captured by an ancestral Vibrio species. The V. cholerae genomic sequence provides a starting point for understanding how a free-living, environmental organism emerged to become a significant human bacterial pathogen.


Subject(s)
Chromosomes, Bacterial , DNA, Bacterial , Vibrio cholerae/genetics , Base Sequence , Biological Transport , Cholera/microbiology , DNA Repair , Energy Metabolism , Evolution, Molecular , Gene Expression Regulation, Bacterial , Genome, Bacterial , Humans , Molecular Sequence Data , Phylogeny , Sequence Analysis, DNA , Vibrio cholerae/classification , Vibrio cholerae/pathogenicity
8.
Science ; 287(5459): 1809-15, 2000 Mar 10.
Article in English | MEDLINE | ID: mdl-10710307

ABSTRACT

The 2,272,351-base pair genome of Neisseria meningitidis strain MC58 (serogroup B), a causative agent of meningitis and septicemia, contains 2158 predicted coding regions, 1158 (53.7%) of which were assigned a biological role. Three major islands of horizontal DNA transfer were identified; two of these contain genes encoding proteins involved in pathogenicity, and the third island contains coding sequences only for hypothetical proteins. Insights into the commensal and virulence behavior of N. meningitidis can be gleaned from the genome, in which sequences for structural proteins of the pilus are clustered and several coding regions unique to serogroup B capsular polysaccharide synthesis can be identified. Finally, N. meningitidis contains more genes that undergo phase variation than any pathogen studied to date, a mechanism that controls their expression and contributes to the evasion of the host immune system.


Subject(s)
Genome, Bacterial , Neisseria meningitidis/genetics , Neisseria meningitidis/pathogenicity , Sequence Analysis, DNA , Antigenic Variation , Antigens, Bacterial/immunology , Bacteremia/microbiology , Bacterial Capsules/genetics , Bacterial Proteins/genetics , Bacterial Proteins/physiology , DNA Transposable Elements , Evolution, Molecular , Fimbriae, Bacterial/genetics , Humans , Meningitis, Meningococcal/microbiology , Meningococcal Infections/microbiology , Molecular Sequence Data , Mutation , Neisseria meningitidis/classification , Neisseria meningitidis/physiology , Open Reading Frames , Operon , Phylogeny , Recombination, Genetic , Serotyping , Transformation, Bacterial , Virulence/genetics
9.
Science ; 286(5444): 1571-7, 1999 Nov 19.
Article in English | MEDLINE | ID: mdl-10567266

ABSTRACT

The complete genome sequence of the radiation-resistant bacterium Deinococcus radiodurans R1 is composed of two chromosomes (2,648,638 and 412,348 base pairs), a megaplasmid (177,466 base pairs), and a small plasmid (45,704 base pairs), yielding a total genome of 3,284, 156 base pairs. Multiple components distributed on the chromosomes and megaplasmid that contribute to the ability of D. radiodurans to survive under conditions of starvation, oxidative stress, and high amounts of DNA damage were identified. Deinococcus radiodurans represents an organism in which all systems for DNA repair, DNA damage export, desiccation and starvation recovery, and genetic redundancy are present in one cell.


Subject(s)
Genome, Bacterial , Gram-Positive Cocci/genetics , Physical Chromosome Mapping , Sequence Analysis, DNA , Bacterial Proteins/biosynthesis , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Catalase/genetics , Chromosomes, Bacterial/genetics , DNA Damage , DNA Repair/genetics , DNA, Bacterial/genetics , Energy Metabolism , Genes, Bacterial , Gram-Positive Cocci/chemistry , Gram-Positive Cocci/classification , Gram-Positive Cocci/radiation effects , Molecular Sequence Data , Open Reading Frames , Oxidative Stress , Plasmids , Radiation Tolerance , Repetitive Sequences, Nucleic Acid , Superoxide Dismutase/genetics , Thermus/chemistry , Thermus/genetics , Ultraviolet Rays
10.
Nature ; 399(6734): 323-9, 1999 May 27.
Article in English | MEDLINE | ID: mdl-10360571

ABSTRACT

The 1,860,725-base-pair genome of Thermotoga maritima MSB8 contains 1,877 predicted coding regions, 1,014 (54%) of which have functional assignments and 863 (46%) of which are of unknown function. Genome analysis reveals numerous pathways involved in degradation of sugars and plant polysaccharides, and 108 genes that have orthologues only in the genomes of other thermophilic Eubacteria and Archaea. Of the Eubacteria sequenced to date, T. maritima has the highest percentage (24%) of genes that are most similar to archaeal genes. Eighty-one archaeal-like genes are clustered in 15 regions of the T. maritima genome that range in size from 4 to 20 kilobases. Conservation of gene order between T. maritima and Archaea in many of the clustered regions suggests that lateral gene transfer may have occurred between thermophilic Eubacteria and Archaea.


Subject(s)
Archaea/genetics , Genome, Bacterial , Recombination, Genetic , Thermotoga maritima/genetics , Bacterial Proteins/metabolism , DNA, Bacterial , Genes, Archaeal , Molecular Sequence Data , Multigene Family , Open Reading Frames , Phylogeny , Protein Biosynthesis , Sequence Analysis, DNA , Thermotoga maritima/classification , Thermotoga maritima/physiology , Transcription, Genetic , Transformation, Bacterial
11.
Mol Cell Biol ; 18(12): 7278-87, 1998 Dec.
Article in English | MEDLINE | ID: mdl-9819414

ABSTRACT

Sorting nexin 1 (SNX1) is a protein that binds to the epidermal growth factor (EGF) receptor and is proposed to play a role in directing EGF receptors to lysosomes for degradation (R. C. Kurten, D. L. Cadena, and G. N. Gill, Science 272:1008-1010, 1996). We have obtained full-length cDNAs and deduced the amino acid sequences of three novel homologous proteins, which were denoted human sorting nexins (SNX2, SNX3, and SNX4). In addition, we identified a presumed splice variant isoform of SNX1 (SNX1A). These molecules contain a conserved domain of approximately 100 amino acids, which was termed the phox homology (PX) domain. Human SNX1 (522 amino acids), SNX1A (457 amino acids), SNX2 (519 amino acids), SNX3 (162 amino acids), and SNX4 (450 amino acids) are part of a larger family of hydrophilic molecules including proteins identified in Caenorhabditis elegans and Saccharomyces cerevisiae. Despite their hydrophilic nature, the sorting nexins are found partially associated with cellular membranes. They are widely expressed, although the tissue distribution of each sorting nexin mRNA varies. When expressed in COS7 cells, epitope-tagged sorting nexins SNX1, SNX1A, SNX2, and SNX4 coimmunoprecipitated with receptor tyrosine kinases for EGF, platelet-derived growth factor, and insulin. These sorting nexins also associated with the long isoform of the leptin receptor but not with the short and medium isoforms. Interestingly, endogenous COS7 transferrin receptors associated exclusively with SNX1 and SNX1A, while SNX3 was not found to associate with any of the receptors studied. Our demonstration of a large conserved family of sorting nexins that interact with a variety of receptor types suggests that these proteins may be involved in several stages of intracellular trafficking in mammalian cells.


Subject(s)
Carrier Proteins/chemistry , ErbB Receptors/metabolism , Vesicular Transport Proteins , Alternative Splicing/genetics , Amino Acid Sequence , Animals , Carrier Proteins/physiology , Cell Membrane/metabolism , Cells, Cultured , Cloning, Molecular , Fungal Proteins/chemistry , Helminth Proteins/chemistry , Humans , Molecular Sequence Data , Protein Binding/physiology , RNA, Messenger/genetics , Receptors, Cell Surface/metabolism , Sequence Analysis, DNA , Sequence Homology, Amino Acid
12.
Nucleic Acids Res ; 26(1): 27-32, 1998 Jan 01.
Article in English | MEDLINE | ID: mdl-9399794

ABSTRACT

From its origin the Protein Information Resource (http://www-nbrf. georgetown.edu/pir/) has supported research on evolution and computational biology by designing and compiling a comprehensive, quality controlled, and well-organized protein sequence database. The database has been produced and updated on a regular schedule since 1984. Since 1988 it has been maintained collaboratively by the PIR-International, an association of data collection centers engaged in international cooperation for the development of this research resource during a period of explosive acquisition of new data. As of June 1997, essentially all sequence entries have been classified into families, allowing the efficient application of methods to propagate and standardize annotation among related sequences. The databases are available through the Internet by the World-Wide Web and FTP, or on CD-ROM and magnetic media.


Subject(s)
Databases, Factual , Proteins/chemistry , Amino Acid Sequence , Computer Communication Networks , Information Storage and Retrieval
13.
Nucleic Acids Res ; 25(1): 24-8, 1997 Jan 01.
Article in English | MEDLINE | ID: mdl-9016497

ABSTRACT

From its origin, the PIR has aspired to support research in computational biology and genomics through the compilation of a comprehensive, quality controlled and well-organized protein sequence information resource. The resource originated with the pioneering work of the late Margaret O. Dayhoff in the early 1960s. Since 1988, the Protein Sequence Database has been maintained collaboratively by PIR-International, an association of macromolecular sequence data collection centers dedicated to fostering international cooperation as an essential element in the development of scientific databases. The work of the resource is widely distributed and is available on the World Wide Web, via FTP, E-mail server, CD-ROM and magnetic media. It is widely redistributed and incorporated into many other protein sequence data compilations including SWISS-PROT and theEntrezsystem of the NCBI.


Subject(s)
Amino Acid Sequence , Databases, Factual , Computer Communication Networks , Foundations , United States
14.
Proc Natl Acad Sci U S A ; 82(16): 5255-9, 1985 Aug.
Article in English | MEDLINE | ID: mdl-2410917

ABSTRACT

The ability of antibodies raised against disordered short peptides to interact frequently with their cognate sequences in intact folded proteins has raised a major theoretical issue in protein chemistry. We propose to address this issue by using antibodies raised against peptides with identical sequences, but different conformations, in pairs of unrelated proteins of known three-dimensional structure. The general search method presented here enabled us to detect candidate sequences for such immunological studies.


Subject(s)
Epitopes/analysis , Peptide Fragments/immunology , Protein Conformation , Proteins/immunology , Animals , Antibodies , Antigen-Antibody Complex , Calcium-Binding Proteins , Models, Molecular , Structure-Activity Relationship , Thiosulfate Sulfurtransferase
SELECTION OF CITATIONS
SEARCH DETAIL
...