Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(3): 033504, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-35364989

ABSTRACT

Laser wakefield acceleration (LWFA) using PW-class laser pulses generally requires cm-scale laser-plasma interaction Rayleigh length, which can be realized by focusing such pulses inside a long underdense plasma with a large f-number focusing optic. Here, we present a new PW-based LWFA instrument at the SG-II 5 PW laser facility, which employs f/23 focusing. The setup also adapted an online probing of the plasma density via Nomarski interferometry using a probe laser beam having 30 fs pulse duration. By focusing 1-PW, 30-fs laser pulses down to a focal spot of 230 µm, the peak laser intensity reached a mild-relativistic level of 2.6 × 1018 W/cm2, a level modest for standard LWFA experiments. Despite the large aspect ratio of >25:1 (transverse to longitudinal dimensions) of the laser pulse, electron beams were observed in our experiment only when the laser pulse experienced relativistic self-focusing at high gas-pressure thresholds, corresponding to plasma densities higher than 3 × 1018 cm-3.

2.
Sci Adv ; 5(11): eaav7940, 2019 11.
Article in English | MEDLINE | ID: mdl-31803828

ABSTRACT

A typical laser-plasma accelerator (LPA) is driven by a single, ultrarelativistic laser pulse from terawatt- or petawatt-class lasers. Recently, there has been some theoretical work on the use of copropagating two-color laser pulses (CTLP) for LPA research. Here, we demonstrate the first LPA driven by CTLP where we observed substantial electron energy enhancements. Those results have been further confirmed in a practical application, where the electrons are used in a bremsstrahlung-based positron generation configuration, which led to a considerable boost in the positron energy as well. Numerical simulations suggest that the trailing second harmonic relativistic laser pulse is capable of sustaining the acceleration structure for much longer distances after the preceding fundamental pulse is depleted in the plasma. Therefore, our work confirms the merits of driving LPAs by two-color pulses and paves the way toward a downsizing of LPAs, making their potential applications in science and technology extremely attractive and affordable.

3.
Rev Sci Instrum ; 86(10): 103502, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26520950

ABSTRACT

An investigation of the electron beam yield (charge) form helium, nitrogen, and neon gas jet plasmas in a typical laser-plasma wakefield acceleration experiment is carried out. The charge measurement is made by imaging the electron beam intensity profile on a fluorescent screen into a charge coupled device which was cross-calibrated with an integrated current transformer. The dependence of electron beam charge on the laser and plasma conditions for the aforementioned gases are studied. We found that laser-driven wakefield acceleration in low Z-gas jet targets usually generates high-quality and well-collimated electron beams with modest yields at the level of 10-100 pC. On the other hand, filamentary electron beams which are observed from high-Z gases at higher densities reached much higher yields. Evidences for cluster formation were clearly observed in the nitrogen gas jet target, where we received the highest electron beam charge of ∼1.7 nC. Those intense electron beams will be beneficial for the applications on the generation of bright X-rays, gamma rays radiations, and energetic positrons via the bremsstrahlung or inverse-scattering processes.

4.
Proc Natl Acad Sci U S A ; 111(16): 5825-30, 2014 Apr 22.
Article in English | MEDLINE | ID: mdl-24711405

ABSTRACT

Desktop laser plasma acceleration has proven to be able to generate gigaelectronvolt-level quasi-monoenergetic electron beams. Moreover, such electron beams can oscillate transversely (wiggling motion) in the laser-produced plasma bubble/channel and emit collimated ultrashort X-ray flashes known as betatron radiation with photon energy ranging from kiloelectronvolts to megaelectronvolts. This implies that usually one cannot obtain bright betatron X-rays and high-quality electron beams with low emittance and small energy spread simultaneously in the same accelerating wave bucket. Here, we report the first (to our knowledge) experimental observation of two distinct electron bunches in a single laser shot, one featured with quasi-monoenergetic spectrum and another with continuous spectrum along with large emittance. The latter is able to generate high-flux betatron X-rays. Such is observed only when the laser self-guiding is extended over 4 mm at a fixed plasma density (4 × 10(18) cm(-3)). Numerical simulation reveals that two bunches of electrons are injected at different stages due to the bubble evolution. The first bunch is injected at the beginning to form a stable quasi-monoenergetic electron beam, whereas the second one is injected later due to the oscillation of the bubble size as a result of the change of the laser spot size during the propagation. Due to the inherent temporal synchronization, this unique electron-photon source can be ideal for pump-probe applications with femtosecond time resolution.

5.
Opt Express ; 22(24): 29578-86, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25606890

ABSTRACT

We report on overall enhancement of a single-stage laser wakefield acceleration (LWFA) using the ionization injection in a mixture of 0.3% nitrogen gas in 99.7% helium gas. Upon the interaction of 30-TW, 30-fs laser pulses with a gas jet of the above gas mixture, >300 MeV electron beams were generated at a helium plasma densities of 3.3-8.5 × 10(18) cm(-3). Compared with the uncontrolled electron self-injection in pure helium gas jet, the ionization injection process due to the presence of ultra-low nitrogen concentrations appears to be self-controlled; it has led to the generation of electron beams with higher energies, higher charge, lower density threshold for trapping, and a narrower energy spread without dark current (low energy electrons) or multiple bunches. It is foreseen that further optimization of such a scheme is expected to bring the electron beam energy-spread down to 1%, making them suitable for driving ultra-compact free-electron lasers.


Subject(s)
Electrons , Lasers , Ions , Plasma Gases/chemistry , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...