Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 18(17): 4770-3, 2008 Sep 01.
Article in English | MEDLINE | ID: mdl-18707880

ABSTRACT

Inhibition of sodium-dependent glucose transporter 2 (SGLT2), the transporter that is responsible for renal re-uptake of glucose, leads to glucosuria in animals. SGLT-mediated glucosuria provides a mechanism to shed excess plasma glucose to ameliorate diabetes-related hyperglycemia and associated complications. The current study demonstrates that the proper relationship of a 4'-substituted benzyl group to a beta-1C-phenylglucoside is important for potent and selective SGLT2 inhibition. The lead C-arylglucoside (7a) demonstrates superior metabolic stability to its O-arylglucoside counterpart (4) and it promotes glucosuria when administered in vivo.


Subject(s)
Glucosides/chemistry , Glucosides/pharmacology , Sodium-Glucose Transporter 2 Inhibitors , Animals , Glucose/chemistry , Glycosuria, Renal/drug therapy , Humans , Kidney/drug effects , Rats , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 2
2.
Diabetes ; 57(6): 1723-9, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18356408

ABSTRACT

OBJECTIVE: The inhibition of gut and renal sodium-glucose cotransporters (SGLTs) has been proposed as a novel therapeutic approach to the treatment of diabetes. We have identified dapagliflozin as a potent and selective inhibitor of the renal sodium-glucose cotransporter SGLT2 in vitro and characterized its in vitro and in vivo pharmacology. RESEARCH DESIGN AND METHODS: Cell-based assays measuring glucose analog uptake were used to assess dapagliflozin's ability to inhibit sodium-dependent and facilitative glucose transport activity. Acute and multi-dose studies in normal and diabetic rats were performed to assess the ability of dapagliflozin to improve fed and fasting plasma glucose levels. A hyperinsulinemic-euglycemic clamp study was performed to assess the ability of dapagliflozin to improve glucose utilization after multi-dose treatment. RESULTS: Dapagliflozin potently and selectively inhibited human SGLT2 versus human SGLT1, the major cotransporter of glucose in the gut, and did not significantly inhibit facilitative glucose transport in human adipocytes. In vivo, dapagliflozin acutely induced renal glucose excretion in normal and diabetic rats, improved glucose tolerance in normal rats, and reduced hyperglycemia in Zucker diabetic fatty (ZDF) rats after single oral doses ranging from 0.1 to 1.0 mg/kg. Once-daily dapagliflozin treatment over 2 weeks significantly lowered fasting and fed glucose levels at doses ranging from 0.1 to 1.0 mg/kg and resulted in a significant increase in glucose utilization rate accompanied by a significant reduction in glucose production. CONCLUSIONS: These data suggest that dapagliflozin has the potential to be an efficacious treatment for type 2 diabetes.


Subject(s)
Blood Glucose/metabolism , Glucosides/therapeutic use , Sodium-Glucose Transport Proteins/antagonists & inhibitors , Sodium-Glucose Transporter 2 Inhibitors , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Benzhydryl Compounds , Blood Glucose/drug effects , Cell Line , Cloning, Molecular , Glucose/metabolism , Humans , Rats , Rats, Zucker , Reference Values , Sodium-Glucose Transporter 1/antagonists & inhibitors , Sodium-Glucose Transporter 1/genetics , Sodium-Glucose Transporter 2/genetics
3.
J Med Chem ; 51(5): 1145-9, 2008 Mar 13.
Article in English | MEDLINE | ID: mdl-18260618

ABSTRACT

The C-aryl glucoside 6 (dapagliflozin) was identified as a potent and selective hSGLT2 inhibitor which reduced blood glucose levels in a dose-dependent manner by as much as 55% in hyperglycemic streptozotocin (STZ) rats. These findings, combined with a favorable ADME profile, have prompted clinical evaluation of dapagliflozin for the treatment of type 2 diabetes.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Glucosides/chemical synthesis , Hypoglycemic Agents/chemical synthesis , Kidney/metabolism , Sodium-Glucose Transporter 2 Inhibitors , Administration, Oral , Animals , Benzhydryl Compounds , Blood Glucose/metabolism , Diabetes Mellitus, Experimental/drug therapy , Glucosides/chemistry , Glucosides/pharmacology , Humans , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Rats , Sodium-Glucose Transporter 2 , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...