Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(2): e10894, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38314315

ABSTRACT

Light detection and ranging (lidar) has emerged as a valuable tool for examining the fine-scale characteristics of vegetation. However, lidar is rarely used to examine coastal wetland vegetation or the habitat selection of small mammals. Extensive anthropogenic modification has threatened the endemic species in the estuarine wetlands of the California coast, such as the endangered salt marsh harvest mouse (Reithrodontomys raviventris; SMHM). A better understanding of SMHM habitat selection could help managers better protect this species. We assessed the ability of airborne topographic lidar imagery in measuring the vegetation structure of SMHM habitats in a coastal wetland with a narrow range of vegetation heights. We also aimed to better understand the role of vegetation structure in habitat selection at different spatial scales. Habitat selection was modeled from data compiled from 15 small mammal trapping grids collected in the highly urbanized San Francisco Estuary in California, USA. Analyses were conducted at three spatial scales: microhabitat (25 m2), mesohabitat (2025 m2), and macrohabitat (~10,000 m2). A suite of structural covariates was derived from raw lidar data to examine vegetation complexity. We found that adding structural covariates to conventional habitat selection variables significantly improved our models. At the microhabitat scale in managed wetlands, SMHM preferred areas with denser and shorter vegetation and selected for proximity to levees and taller vegetation in tidal wetlands. At the mesohabitat scale, SMHM were associated with a lower percentage of bare ground and with pickleweed (Salicornia pacifica) presence. All covariates were insignificant at the macrohabitat scale. Our results suggest that SMHM preferentially selected microhabitats with access to tidal refugia and mesohabitats with consistent food sources. Our findings showed that lidar can contribute to improving our understanding of habitat selection of wildlife in coastal wetlands and help to guide future conservation of an endangered species.

2.
PLoS One ; 16(9): e0257716, 2021.
Article in English | MEDLINE | ID: mdl-34551021

ABSTRACT

Black bears (Ursus americanus) are an iconic and common species throughout much of the United States and people regularly interact with these large predators without conflict. However, negative interactions between people and bears can manifest in conflicts that can hinder conservation efforts. Black bears are highly attracted to anthropogenic sources of food, and negative interactions with people are primarily a product of trash mismanagement. In the Catskills region of New York State, home to a large population of black bears, over 400 such conflicts are reported each year. While the New York Department of Environmental Conservation (DEC) has seen progress recently in educating residents of the region on how to reduce unwanted interactions with bears, they have had less success educating the 12 million tourists that visit the Catskills each year. Understanding where conflict may occur in the future, and the environmental and anthropogenic factors that precede it, may help guide management strategies to reduce these unwanted interactions. Therefore, we designed resource selection probability functions (RSPFs) to examine the relationship between human-black bear conflicts in the Catskills with a suite of landscape and anthropogenic data, using conflicts reported to the DEC across the state of New York in 2018-2019. We found that human-black bear conflicts were more likely to occur in the residential areas of the Catskills on the urban-wildland interface; areas with relatively higher human population densities, away from dense forest, and further from heavily urbanized areas. While future work is needed to continuously validate our model predictions, our results will provide the DEC and other conservation managers in the Catskills the ability to create more targeted plans for mitigating unwanted human-black bear interactions, and provide a better understanding of the mechanisms driving human-carnivore interactions at an urban-wildland interface more generally.


Subject(s)
Conservation of Natural Resources , Ursidae , Animals , Ecosystem , New York
SELECTION OF CITATIONS
SEARCH DETAIL
...