Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Med Phys ; 39(5): 2628-37, 2012 May.
Article in English | MEDLINE | ID: mdl-22559633

ABSTRACT

PURPOSE: The authors wish to determine the extent to which the Response Evaluation Criteria in Solid Tumors (RECIST) and the criteria of the World Health Organization (WHO) can predict tumor volumes and changes in volume using clinical data. METHODS: The data presented are a reanalysis of data acquired in other studies, including the public database from the Lung Image Database Consortium (LIDC) and from a study of liver tumors. RESULTS: The principal result is that a given RECIST diameter predicts volume to a factor of 16 or 10 for the two data sets, respectively, by examining 95% prediction bounds and that changes in volume are predicted only little better: to within a factor of 7 for the liver data. The WHO criteria reduce the prediction bounds by a factor of 1.3 in all cases. Also, the RECIST threshold of 10 mm to measure a nodule corresponds to a transition zone width of a factor of more than 2 in volume for the nodules in the LIDC database. CONCLUSIONS: While the RECIST diameter is certainly correlated with the volume, and similarly for changes in these quantities, the use of the diameter introduces additional variation assuming volume is the quantity of interest. Exactly how much this reduces the statistical power of clinical drug trials is a key open question for future research.


Subject(s)
Liver Neoplasms/pathology , Lung Neoplasms/pathology , Tumor Burden , Uncertainty , Databases, Factual , Humans
2.
J Res Natl Inst Stand Technol ; 113(3): 131-42, 2008.
Article in English | MEDLINE | ID: mdl-27096116

ABSTRACT

This is the third in a series of articles that describe, through examples, how the Scientific Applications and Visualization Group (SAVG) at NIST has utilized high performance parallel computing, visualization, and machine learning to accelerate scientific discovery. In this article we focus on the use of high performance computing and visualization for simulations of nanotechnology.

3.
J Res Natl Inst Stand Technol ; 113(4): 221-38, 2008.
Article in English | MEDLINE | ID: mdl-27096123

ABSTRACT

We present methods for measuring errors in the rendering of three-dimensional points, line segments, and polygons in pixel-based computer graphics systems. We present error metrics for each of these three cases. These methods are applied to rendering with OpenGL on two common hardware platforms under several rendering conditions. Results are presented and differences in measured errors are analyzed and characterized. We discuss possible extensions of this error analysis approach to other aspects of the process of generating visual representations of synthetic scenes.

4.
J Res Natl Inst Stand Technol ; 112(5): 257-70, 2007.
Article in English | MEDLINE | ID: mdl-27110469

ABSTRACT

This paper describes a set of tools for performing measurements of objects in a virtual reality based immersive visualization environment. These tools enable the use of the immersive environment as an instrument for extracting quantitative information from data representations that hitherto had be used solely for qualitative examination. We provide, within the virtual environment, ways for the user to analyze and interact with the quantitative data generated. We describe results generated by these methods to obtain dimensional descriptors of tissue engineered medical products. We regard this toolbox as our first step in the implementation of a virtual measurement laboratory within an immersive visualization environment.

5.
J Res Natl Inst Stand Technol ; 111(6): 411-7, 2006.
Article in English | MEDLINE | ID: mdl-27274943

ABSTRACT

The vast majority of the developments in tomography assume that the transmission of the probe through the sample follows Beer's Law, i.e., the rule of exponential attenuation. However, for transmission electron microscopy of samples a few times their mean free path, Beer's Law is no longer an accurate description of the transmission of the probe as a function of the sample thickness. Recent simulations [Z. H. Levine, Appl. Phys. Lett. 82, 3943 (2003)] have demonstrated accounting for the correct transmission function leads to superior tomographic reconstructions for a photonic band gap sample 8 µm square. Those recent simulations assumed that data was available at all angles, i.e., over 180°. Here, we consider a limited-angle case by generalizing the Bayesian formalism of Bouman and Sauer to allow an arbitrary transmission function. The new formalism is identical to that of Bouman and Sauer when the transmission function obeys Beer's Law. The examples, based on 140° of data, suggest that using the physical transmission function is a requirement for performing limited angle reconstructions.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 69(5 Pt 2): 056312, 2004 May.
Article in English | MEDLINE | ID: mdl-15244937

ABSTRACT

We investigate the influence of geometrical confinement on the breakup of long fluid threads in the absence of imposed flow using a lattice Boltzmann model. Our simulations primarily focus on the case of threads centered coaxially in a tube filled with another Newtonian fluid and subjected to both impulsive and random perturbations. We observe a significant slowing down of the rate of thread breakup ("kinetic stabilization") over a wide range of the confinement, Lambda= R(tube)/R(thread) < or =10 and find that the relative surface energies of the liquid components influence this effect. For Lambda<2.3, there is a transition in the late-stage morphology between spherical droplets and tube "plugs." Unstable distorted droplets ("capsules") form as transient structures for intermediate confinement (Lambda approximately equal 2.1-2.5). Surprisingly, the thread breakup process for more confined threads (Lambda< or =1.9 ) is found to be sensitive to the nature of the initial thread perturbation. Localized impulsive perturbations ("taps") cause a "bulging" of the fluid at the wall, followed by thread breakup through the propagation of a wave-like disturbance ("end-pinch instability") initiating from the thread rupture point. Random impulses along the thread, modeling thermal fluctuations, lead to a complex breakup process involving a competition between the Raleigh and end-pinch instabilities. We also briefly compare our tube simulations to threads confined between parallel plates and to multiple interacting threads under confinement.

7.
J Res Natl Inst Stand Technol ; 107(3): 223-45, 2002.
Article in English | MEDLINE | ID: mdl-27446728

ABSTRACT

This is the second in a series of articles describing a wide variety of projects at NIST that synergistically combine physical science and information science. It describes, through examples, how the Scientific Applications and Visualization Group (SAVG) at NIST has utilized high performance parallel computing, visualization, and machine learning to accelerate research. The examples include scientific collaborations in the following areas: (1) High Precision Energies for few electron atomic systems, (2) Flows of suspensions, (3) X-ray absorption, (4) Molecular dynamics of fluids, (5) Nanostructures, (6) Dendritic growth in alloys, (7) Screen saver science, (8) genetic programming.

SELECTION OF CITATIONS
SEARCH DETAIL
...