Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Cancer Res ; 13(13): 3942-50, 2007 Jul 01.
Article in English | MEDLINE | ID: mdl-17606728

ABSTRACT

PURPOSE: Dysfunctional tumor vessels can be a significant barrier to effective cancer therapy. However, increasing evidence suggests that vascular endothelial growth factor (VEGF) inhibition can effect transient "normalization" of the tumor vasculature, thereby improving tumor perfusion and, consequently, delivery of systemic chemotherapy. We sought to examine temporal changes in tumor vascular function in response to the anti-VEGF antibody, bevacizumab. EXPERIMENTAL DESIGN: Established orthotopic neuroblastoma xenografts treated with bevacizumab were evaluated at serial time points for treatment-associated changes in intratumoral vascular physiology, penetration of systemically administered chemotherapy, and efficacy of combination therapy. RESULTS: After a single bevacizumab dose, a progressive decrease in tumor microvessel density to <30% of control was observed within 7 days. Assessment of the tumor microenvironment revealed a rapid, sustained decrease in both tumor vessel permeability and tumor interstitial fluid pressure, whereas intratumoral perfusion, as assessed by contrast-enhanced ultrasonography, was improved, although this latter change abated by 1 week. Intratumoral drug delivery mirrored these changes; penetration of chemotherapy was improved by as much as 81% when given 1 to 3 days after bevacizumab, compared with when both drugs were given concomitantly, or 7 days apart. Finally, administering topotecan to tumor-bearing mice 3 days after bevacizumab resulted in greater tumor growth inhibition (36% of control size) than with monotherapy (88% bevacizumab, 54% topotecan) or concomitant administration of the two drugs (44%). CONCLUSIONS: Bevacizumab-mediated VEGF blockade effects alterations in tumor vessel physiology that allow improved delivery and efficacy of chemotherapy, although careful consideration of drug scheduling is required to optimize antitumor activity.


Subject(s)
Angiogenesis Inhibitors/administration & dosage , Angiogenesis Inhibitors/pharmacology , Antibodies, Monoclonal/pharmacology , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Neuroblastoma/drug therapy , Animals , Antibodies, Monoclonal, Humanized , Bevacizumab , Cell Line, Tumor , Humans , Male , Mice , Microcirculation , Neoplasm Transplantation , Neovascularization, Pathologic , Neuroblastoma/metabolism , Neuroblastoma/pathology , Phenotype , Pressure , Vascular Endothelial Growth Factor A/chemistry , Vascular Endothelial Growth Factor A/metabolism
2.
J Pediatr Surg ; 42(1): 160-5; discussion 165, 2007 Jan.
Article in English | MEDLINE | ID: mdl-17208558

ABSTRACT

BACKGROUND: We have recently demonstrated that continuous delivery of interferon beta (IFN-beta) stabilizes solid tumor vasculature and improves tumor perfusion. In this study, we have further investigated the functional consequences of this effect by assessing delivery and efficacy of conventional chemotherapy against neuroblastoma xenografts when used in combination with IFN-beta. METHODS: Mice with established retroperitoneal tumors received adeno-associated virus vector encoding IFN-beta (AAV IFN-beta) or control vector. One week later, at 1 hour before sacrifice, a 1 mg/kg i.v. bolus of topotecan (TPT) was given. Intratumoral levels of TPT were measured by high-performance liquid chromatography and then standardized to plasma levels to determine tumor TPT penetration. Subsequent experiments evaluated the antitumor efficacy of topotecan alone or in combination with AAV IFN-beta. RESULTS: As observed in prior experiments, AAV IFN-beta resulted in a marked increase in tumor vessel association with stabilizing perivascular smooth muscle cells. These more "matured" vessels facilitated improved tumor TPT penetration (51.2% +/- 4.2%) compared with controls (30.8% +/- 4.7%, P = .004). In additional cohorts of mice, this resulted in an improved antitumor effect. Mice with established tumors (301.8 +/- 18.1 mm3) were treated with TPT (1 mg/kg daily for 5 days for 2 consecutive weeks) either alone or in combination with AAV IFN-beta (5 x 10(10) vector particles per mouse). Topotecan monotherapy resulted in a reduction in mean tumor volume of 12% (264.2 +/- 65.8 mm3, P = .66). However, when the same regimen was administered to mice receiving continuous IFN-beta therapy, a 61% (118.9 +/- 42.3 mm3, P = .004) reduction in mean tumor volume was achieved. CONCLUSION: Interferon beta-mediated vessel stabilization resulted in improved intratumoral delivery of systemically administered TPT, enhancing its antitumor efficacy. This approach of altering the tumor vasculature provides a strategy to help overcome solid tumor resistance to traditional cytotoxic agents.


Subject(s)
Antineoplastic Agents/pharmacology , Blood Vessels/drug effects , Interferon-beta/pharmacology , Neuroblastoma/metabolism , Topotecan/pharmacology , Adenoviridae , Animals , Disease Models, Animal , Genetic Vectors , Mice , Neoplasm Transplantation
SELECTION OF CITATIONS
SEARCH DETAIL
...