Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Dermatol ; 33(3): e15038, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38450780

ABSTRACT

Tissue-engineered skin represents a helpful strategy for the treatment of deep skin injuries. Nevertheless, these skin substitutes must promote and encourage proper vascularization for a successful graft take. Previous work showed that dermal papilla cells (DPC) favour an earlier neovascularization process of grafted skin substitute contributing to the rapid maturation of the neovascular network, reducing inflammation and favouring extracellular matrix remodelling in nude mice. Based on these results, we studied the influence of DPC and its culture conditions on the different stages of angiogenesis in in vitro models. Here, we showed that DPC cultured as spheres favour the expression of angiogenic factors such as VEGF, FGF2 and angiogenin compared to their monolayer culture. To study the effects of DPC on the different stages of angiogenesis, an in vitro model has been adapted. DPC cultured as spheres significantly enhanced HUVEC migration and tubule formation, indicating the importance of employing physiological culture systems that provide a closer representation of cell behaviour and interactions occurring in vivo. Overall, these results allow us to speculate that the use of DPC spheres in skin substitutes could promote its grafting, vascularization and vascular network maturation through the secretion of angiogenic factors. This approach has great potential to improve clinical outcomes in regenerative medicine and skin wound repair.


Subject(s)
Angiogenesis , Extracellular Matrix , Animals , Mice , Mice, Nude , Inflammation , Neovascularization, Pathologic
2.
J Dermatol Sci ; 85(2): 124-130, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27932255

ABSTRACT

BACKGROUND: Cytokine production and oxidative stress generated by ultraviolet radiation B (UVB) skin exposure are main factors of skin photoaging. Interleukin-6 (IL-6) produced by irradiated keratinocytes is proposed to have a role in metalloproteinases (MMPs) expression activation in dermal fibroblasts. OBJECTIVES: We examined the effect of triolein treatment of UVB-irradiated keratinocytes on MMP1 (interstitial collagenase) expression response of dermal fibroblasts. We assayed UVB-irradiated keratinocytes soluble signals, mainly IL-6 and reactive oxygen species (ROS). METHODS: IL-6 expression and ROS generation were assayed in UVB-irradiated keratinocytes. MMP1 mRNA expression response was assayed in fibroblasts grown in keratinocytes conditioned medium. We evaluated the effect of treating keratinocytes with triolein on IL-6 expression and ROS generation in keratinocytes, and MMP1 expression in fibroblasts. RESULTS: The irradiation of epidermal cells with sublethal UVB doses increased IL-6 expression and ROS generation. Conditioned culture medium collected from keratinocytes was used to culture dermal fibroblasts. MMP1 mRNA expression increase was observed in fibroblasts cultured in medium collected from UVB-irradiated keratinocytes. Triolein treatment reduced the IL-6 expression and ROS generation in keratinocytes and this effect was reflected in downregulation of MMP1 expression in fibroblasts. CONCLUSIONS: Triolein reduces both the expression of IL-6 and ROS generation in irradiated keratinocytes. It seems to exert an anti-inflammatory and anti-oxidative stress effect on irradiated keratinocytes that in turn reduces MMP1 expression in dermal fibroblasts. Collectively, these results indicate that triolein could act as a photoprotective agent.


Subject(s)
Keratinocytes/drug effects , Matrix Metalloproteinase 1/metabolism , Reactive Oxygen Species/metabolism , Sunscreening Agents/pharmacology , Triolein/pharmacology , Antioxidants/pharmacology , Cell Line , Culture Media, Conditioned , Dermis/cytology , Dermis/drug effects , Dermis/enzymology , Dermis/radiation effects , Down-Regulation , Fibroblasts/drug effects , Fibroblasts/enzymology , Humans , Interleukin-6/metabolism , Keratinocytes/enzymology , Keratinocytes/radiation effects , Oxidative Stress/drug effects , RNA, Messenger/metabolism , Skin Aging/drug effects , Skin Aging/radiation effects , Ultraviolet Rays/adverse effects , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...