Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Catal ; 14(8): 5978-5986, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38660614

ABSTRACT

Reaction products in heterogeneous catalysis can be detected either on the catalyst surface or in the gas phase after desorption. However, if atoms are dissolved in the catalyst bulk, then reaction channels can become hidden. This is the case if the dissolution rate of the deposits is faster than their formation rate. This might lead to the underestimation or even overlooking of reaction channels such as, e.g., carbon deposition during hydrocarbon oxidation reactions, which is problematic as carbon can have a significant influence on the catalytic activity. Here, we demonstrate how such hidden deposition channels can be uncovered by carefully measuring the product formation rates in the local gas phase just above the catalyst surface with time-resolved ambient pressure X-ray photoelectron spectroscopy. As a case study, we investigate methane oxidation on a polycrystalline Pd catalyst in an oxygen-lean environment at a few millibar pressure. By ramping the temperature between 350 and 525 °C, we follow the time evolution of the different reaction pathways. Only in the oxygen mass-transfer limit do we observe CO production, while our data suggests that carbon deposition also happens outside this limit.

2.
Chemphyschem ; 22(9): 822-827, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33689210

ABSTRACT

Side-arm hydrogenation (SAH) by homogeneous catalysis has extended the reach of the parahydrogen enhanced NMR technique to key metabolites such as pyruvate. However, homogeneous hydrogenation requires rapid separation of the dissolved catalyst and purification of the hyperpolarised species with a purity sufficient for safe in-vivo use. An alternate approach is to employ heterogeneous hydrogenation in a continuous-flow reactor, where separation from the solid catalysts is straightforward. Using a TiO2 -nanorod supported Rh catalyst, we demonstrate continuous-flow parahydrogen enhanced NMR by heterogeneous hydrogenation of a model SAH precursor, propargyl acetate, at a flow rate of 1.5 mL/min. Parahydrogen gas was introduced into the flowing solution phase using a novel tube-in-tube membrane dissolution device. Without much optimization, proton NMR signal enhancements of up to 297 (relative to the thermal equilibrium signals) at 9.4 Tesla were shown to be feasible on allyl-acetate at a continuous total yield of 33 %. The results are compared to those obtained with the standard batch-mode technique of parahydrogen bubbling through a suspension of the same catalyst.


Subject(s)
Acetates/chemistry , Hydrogen/chemistry , Morphinans/chemistry , Catalysis , Hydrogenation , Magnetic Resonance Spectroscopy
3.
Angew Chem Int Ed Engl ; 60(8): 4038-4042, 2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33176031

ABSTRACT

Oxide supports with well-defined shapes enable investigations on the effects of surface structure on metal-support interactions and correlations to catalytic activity and selectivity. Here, a modified atomic layer deposition technique was developed to achieve ultra-low loadings (8-16 ppm) of Pt on shaped ceria nanocrystals. Using octahedra and cubes, which expose exclusively (111) and (100) surfaces, respectively, the effect of CeO2 surface facet on Pt-CeO2 interactions under reducing conditions was revealed. Strong electronic interactions result in electron-deficient Pt species on CeO2 (111) after reduction, which increased the stability of the atomically dispersed Pt. This afforded significantly higher NMR signal enhancement in parahydrogen-induced polarization experiments compared with the electron-rich platinum on CeO2 (100), and a factor of two higher pairwise selectivity (6.1 %) in the hydrogenation of propene than any previously reported monometallic heterogeneous Pt catalyst.

4.
Angew Chem Int Ed Engl ; 56(14): 3925-3929, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28276607

ABSTRACT

Recently, a facile method for the synthesis of size-monodisperse Pt, Pt3 Sn, and PtSn intermetallic nanoparticles (iNPs) that are confined within a thermally robust mesoporous silica (mSiO2 ) shell was introduced. These nanomaterials offer improved selectivity, activity, and stability for large-scale catalytic applications. Here we present the first study of parahydrogen-induced polarization NMR on these Pt-Sn catalysts. A 3000-fold increase in the pairwise selectivity, relative to the monometallic Pt, was observed using the PtSn@mSiO2 catalyst. The results are explained by the elimination of the three-fold Pt sites on the Pt(111) surface. Furthermore, Pt-Sn iNPs are shown to be a robust catalytic platform for parahydrogen-induced polarization for in vivo magnetic resonance imaging.

5.
Phys Chem Chem Phys ; 17(39): 26121-9, 2015 Oct 21.
Article in English | MEDLINE | ID: mdl-26376759

ABSTRACT

Parahydrogen induced polarization using heterogeneous catalysis can produce impurity-free hyperpolarized gases and liquids, but the comparatively low signal enhancements and limited scope of substrates that can be polarized pose significant challenges to this approach. This study explores the surface processes affecting the disposition of the bilinear spin order derived from parahydrogen in the hydrogenation of propyne over TiO2-supported Pt nanoparticles. The hyperpolarized adducts formed at low magnetic field are adiabatically transported to high field for analysis by proton NMR spectroscopy at 400 MHz. For the first time, the stereoselectivity of pairwise addition to propyne is measured as a function of reaction conditions. The correlation between partial reduction selectivity and stereoselectivity of pairwise addition is revealed. The systematic trends are rationalized in terms of a hybrid mechanism incorporating non-traditional concerted addition steps and well-established reversible step-wise addition involving the formation of a surface bound 2-propyl intermediate.

6.
Angew Chem Int Ed Engl ; 54(48): 14270-5, 2015 Nov 23.
Article in English | MEDLINE | ID: mdl-26385391

ABSTRACT

Intense para-hydrogen-enhanced NMR signals are observed in the hydrogenation of propene and propyne over ceria nanocubes, nano-octahedra, and nanorods. The well-defined ceria shapes, synthesized by a hydrothermal method, expose different crystalline facets with various oxygen vacancy densities, which are known to play a role in hydrogenation and oxidation catalysis. While the catalytic activity of the hydrogenation of propene over ceria is strongly facet-dependent, the pairwise selectivity is low (2.4% at 375 °C), which is consistent with stepwise H atom transfer, and it is the same for all three nanocrystal shapes. Selective semi-hydrogenation of propyne over ceria nanocubes yields hyperpolarized propene with a similar pairwise selectivity of (2.7% at 300 °C), indicating product formation predominantly by a non-pairwise addition. Ceria is also shown to be an efficient pairwise replacement catalyst for propene.

7.
J Am Chem Soc ; 137(5): 1938-46, 2015 Feb 11.
Article in English | MEDLINE | ID: mdl-25629434

ABSTRACT

Pairwise and random addition processes are ordinarily indistinguishable in hydrogenation reactions. The distinction becomes important only when the fate of spin correlation matters, such as in parahydrogen-induced polarization (PHIP). Supported metal catalysts were not expected to yield PHIP signals given the rapid diffusion of H atoms on the catalyst surface and in view of the sequential stepwise nature of the H atom addition in the Horiuti-Polanyi mechanism. Thus, it seems surprising that supported metal hydrogenation catalysts can yield detectable PHIP NMR signals. Even more remarkably, supported Pt and Ir nanoparticles are shown herein to catalyze pairwise replacement on propene and 3,3,3-trifluoropropene. By simply flowing a mixture of parahydrogen and alkene over the catalyst, the scalar symmetrization order of the former is incorporated into the latter without a change in molecular structure, producing intense PHIP NMR signals on the alkene. An important indicator of the mechanism of the pairwise replacement is its stereoselectivity, which is revealed with the aid of density matrix spectral simulations. PHIP by pairwise replacement has the potential to significantly diversify the substrates that can be hyperpolarized by PHIP for biomedical utilization.

8.
J Phys Chem A ; 112(18): 4246-53, 2008 May 08.
Article in English | MEDLINE | ID: mdl-18407707

ABSTRACT

The gas-phase decomposition pathways of diethylzinc (DEZn), a common precursor for deposition of Zn-VI compounds, were investigated in detail. The homogeneous thermal decomposition of DEZn in N2 carrier was followed in an impinging-jet, up-flow reactor by Raman scattering. Density Functional Theory calculations were performed to describe the bond dissociation behavior using the model chemistry B3LYP/6-311G(d) to estimate optimal geometries and Raman active vibrational frequencies of DEZn, as well as anticipated intermediates and products. Comparison of the measured DEZn decomposition profile to that predicted by a 2-D hydrodynamic simulation revealed that simple bond dissociation between zinc and carbon atoms is the dominant homogeneous thermal decomposition pathway. The calculations suggest several reactions involving intermediates and Raman scattering experiments confirming the formation of the dimer (ZnC2H5)2. In a different set of experiments, photolysis of DEZn gave evidence for decomposition by beta-hydride elimination. The results suggest that beta-hydride elimination is a minor pathway for the gas-phase homogeneous pyrolysis of diethylzinc. A reasonable transition state during beta-hydride elimination was identified, and the calculated energies and thermodynamic properties support the likelihood of these reaction steps.

SELECTION OF CITATIONS
SEARCH DETAIL
...