Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Sens J ; 23(21): 25911-25918, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38784847

ABSTRACT

The rapid advancement of biosensor technology has revolutionized healthcare, offering improved sensitivity, specificity, and portability. We have developed an optical cavity-based biosensor (OCB) as a promising solution due to its label-free detection, high sensitivity, real-time monitoring, multiplexing capability, and versatility. The OCB consists of an optical cavity structure (OCS), optical components, and a low-cost camera. The OCS is created by two partially reflective surfaces separated by a small gap, where the interaction between target analytes and immobilized receptors leads to a shift in the resonance transmission spectrum, caused by minute changes in the local refractive index (RI). In our previous work, we successfully detected these small changes with a simple OCS and cost-effective components using a differential detection method. Building upon these achievements, this study focuses on optimizing the OCS, improving the camera settings, and enhancing the differential detection approach. By increasing the reflectance of the surfaces and optimizing the optical cavity widths correspondingly, we achieved an improved limit of detection (LOD). We also investigated how the charge-coupled device (CCD) camera shutter time affects the LOD. Additionally, we introduced a new differential equation to further enhance the sensitivity of our system. Through these advancements, we could improve the LOD of the OCB by 7.2 times, specifically for an OCS with a cavity thickness of 9.881 µm and a silver thickness of 46.87 nm. These findings not only contribute to the ongoing effort of optimizing the OCB, but also pave the way for the development of advanced point-of-care biosensors with enhanced detection capabilities.

2.
Biosensors (Basel) ; 13(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36671871

ABSTRACT

Surface functionalization and bioreceptor immobilization are critical processes in developing a highly sensitive and selective biosensor. The silanization process with 3-aminopropyltriethoxysilane (APTES) on oxide surfaces is frequently used for surface functionalization because of beneficial characteristics such as its bifunctional nature and low cost. Optimizing the deposition process of the APTES layer to obtain a monolayer is crucial to having a stable surface and effectively immobilizing the bioreceptors, which leads to the improved repeatability and sensitivity of the biosensor. This review provides an overview of APTES deposition methods, categorized into the solution-phase and vapor-phase, and a comprehensive summary and guide for creating stable APTES monolayers on oxide surfaces for biosensing applications. A brief explanation of APTES is introduced, and the APTES deposition methods with their pre/post-treatments and characterization results are discussed. Lastly, APTES deposition methods on nanoparticles used for biosensors are briefly described.


Subject(s)
Biosensing Techniques , Oxides , Surface Properties , Silanes , Propylamines , Gases , Biosensing Techniques/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...