Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 7(27)2021 06.
Article in English | MEDLINE | ID: mdl-34193424

ABSTRACT

Centromeres are epigenetically determined chromosomal loci that seed kinetochore assembly to promote chromosome segregation during cell division. CENP-A, a centromere-specific histone H3 variant, establishes the foundations for centromere epigenetic memory and kinetochore assembly. It recruits the constitutive centromere-associated network (CCAN), which in turn assembles the microtubule-binding interface. How the specific organization of centromeric chromatin relates to kinetochore assembly and to centromere identity through cell division remains conjectural. Here, we break new ground by reconstituting a functional full-length version of CENP-C, the largest human CCAN subunit and a blueprint of kinetochore assembly. We show that full-length CENP-C, a dimer, binds stably to two nucleosomes and permits further assembly of all other kinetochore subunits in vitro with relative ratios closely matching those of endogenous human kinetochores. Our results imply that human kinetochores emerge from clustering multiple copies of a fundamental module and may have important implications for transgenerational inheritance of centromeric chromatin.


Subject(s)
Histones , Kinetochores , Centromere/metabolism , Centromere Protein A/genetics , Centromere Protein A/metabolism , Humans , Kinetochores/metabolism , Nucleosomes
2.
Rapid Commun Mass Spectrom ; 32(19): 1659-1667, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30062799

ABSTRACT

RATIONALE: Mass spectrometry (MS) is an invaluable tool for the analysis of proteins. However, the sheer amount of data generated in MS studies demands dedicated data-processing tools that are efficient and require minimal user intervention. METHODS: Utilities for Mass Spectrometry Analysis of Proteins (UMSAP) is a graphical user interface designed for efficient post-processing of MS result files. The software is written in Tcl/Tk and can be used in Windows, OS X or Linux. No third party programs or libraries are required. Currently, UMSAP can process data obtained from proteolytic degradation experiments and generates graphical outputs allowing a straightforward interpretation of statistically relevant results. RESULTS: UMSAP is used here to analyze the proteolytic degradation of glycerophosphoryl diester phosphodiesterase GlpQ by the protein quality control protease DegP. Mass spectrometry was used to monitor proteolysis over time in the absence and presence of a peptidic allosteric activator of DegP. The software's output clearly shows the increased proteolytic activity of DegP in the presence of the activating peptide, identifies statistically significant products of the proteolysis and offers valuable insights into substrate specificity. CONCLUSIONS: Utilities for Mass Spectrometry Analysis of Proteins is an open-source software designed for efficient post-processing of large datasets obtained by MS analyses of proteins. In addition, the modular architecture of the software allows easy incorporation of new modules to analyze various experimental mass spectrometry setups.


Subject(s)
Mass Spectrometry/methods , Proteins/analysis , Proteomics/methods , Software , Databases, Protein , Models, Molecular
SELECTION OF CITATIONS
SEARCH DETAIL
...