Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38733056

ABSTRACT

Nitrogen oxides (NOx), primarily generated from combustion processes, pose significant health and environmental risks. To improve the coordination of measures against excessive NOx emissions, it is necessary to effectively monitor ambient NOx concentrations, which requires the development of precise and cost-efficient detection methods. This study focuses on developing a microwave- or radio frequency (RF)-based gas dosimeter for NOx detection and addresses the optimization of the dosimeter design by examining the dielectric properties of LTCC-based (Low-Temperature Co-fired Ceramics) sensor substrates and barium-based NOx storage materials. The measurements taken utilizing the Microwave Cavity Perturbation (MCP) method revealed that these materials exhibit more pronounced changes in dielectric losses when storing NOx at elevated temperatures. Consequently, operating such a dosimeter at high temperatures (above 300 °C) is recommended to maximize the sensor signal. To evaluate their high-temperature applicability, LTCC substrates were analyzed by measuring their dielectric losses at temperatures up to 600 °C. In terms of NOx storage materials, coating barium on high-surface-area alumina resolved issues related to limited NOx adsorption in pure barium carbonate powders. Additionally, the adsorption of both NO and NO2 was enabled by the application of a platinum catalyst. The change in dielectric losses, which provides the main signal for an RF-based gas dosimeter, only depends on the stored amount of NOx and not on the specific type of nitrogen oxide. Although the change in dielectric losses increases with the temperature, the maximum storage capacity of the material decreases significantly. In addition, at temperatures above 350 °C, NOx is mostly weakly bound, so it will desorb in the absence of NOx. Therefore, in the future development of a reliable RF-based NOx dosimeter, the trade-off between the sensor signal strength and adsorption behavior must be addressed.

2.
Sensors (Basel) ; 23(18)2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37765917

ABSTRACT

Owing to increasingly stringent emission limits, particulate filters have become mandatory for gasoline-engine vehicles. Monitoring their soot loading is necessary for error-free operation. The state-of-the-art differential pressure sensors suffer from inaccuracies due to small amounts of stored soot combined with exhaust gas conditions that lead to partial regeneration. As an alternative approach, radio-frequency-based (RF) sensors can accurately measure the soot loading, even under these conditions, by detecting soot through its dielectric properties. However, they face a different challenge as their sensitivity may depend on the engine operation conditions during soot formation. In this article, this influence is evaluated in more detail. Various soot samples were generated on an engine test bench. Their dielectric properties were measured using the microwave cavity perturbation (MCP) method and compared with the corresponding sensitivity of the RF sensor determined on a lab test bench. Both showed similar behavior. The values for the soot samples themselves, however, differed significantly from each other. A way to correct for this cross-sensitivity was found in the influence of exhaust gas humidity on the RF sensor, which can be correlated with the engine load. By evaluating this influence during significant humidity changes, such as fuel cuts, it could be used to correct the influence of the engineon the RF sensor.

3.
Sensors (Basel) ; 23(12)2023 Jun 15.
Article in English | MEDLINE | ID: mdl-37420779

ABSTRACT

Due to increasingly stringent limits for NOx emissions, there is now more interest than ever in cost-effective, precise, and durable exhaust gas sensor technology for combustion processes. This study presents a novel multi-gas sensor with resistive sensing principles for the determination of oxygen stoichiometry and NOx concentration in the exhaust gas of a diesel engine (OM 651). A screen-printed porous KMnO4/La-Al2O3 film is used as the NOx sensitive film, while a dense ceramic BFAT (BaFe0.74Ta0.25Al0.01O3-δ) film prepared by the PAD method is used for λ-measurement in real exhaust gas. The latter is also used to correct the O2 cross-sensitivity of the NOx sensitive film. This study presents results under dynamic conditions during an NEDC (new European driving cycle) based on a prior characterization of the sensor films in an isolated sensor chamber with static engine operation. The low-cost sensor is analyzed in a wide operation field and its potential for real exhaust gas applications is evaluated. The results are promising and, all in all, comparable with established, but usually more expensive, exhaust gas sensors.


Subject(s)
Oxygen , Vehicle Emissions , Oxygen/analysis , Gasoline , Nitrogen Oxides/analysis
4.
Sensors (Basel) ; 23(8)2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37112255

ABSTRACT

This study presents a resistive sensor concept based on Barium Iron Tantalate (BFT) to measure the oxygen stoichiometry in exhaust gases of combustion processes. The BFT sensor film was deposited on the substrate by the Powder Aerosol Deposition (PAD) method. In initial laboratory experiments, the sensitivity to pO2 in the gas phase was analyzed. The results agree with the defect chemical model of BFT materials that suggests the formation of holes h• by filling oxygen vacancies VO•• in the lattice at higher oxygen partial pressures pO2. The sensor signal was found to be sufficiently accurate and to have low time constants with changing oxygen stoichiometry. Further investigations on reproducibility and cross-sensitivities to typical exhaust gas species (CO2, H2O, CO, NO, …) confirmed a robust sensor signal that was hardly affected by other gas components. The sensor concept was also tested in real engine exhausts for the first time. The experimental data showed that the air-fuel ratio can be monitored by measuring the resistance of the sensor element, including partial and full-load operation modes. Furthermore, no signs of inactivation or aging during the test cycles were observed for the sensor film. Overall, a promising first data set was obtained in engine exhausts and therefore the BFT system is a possible cost-effective alternative concept to existing commercial sensors in the future. Moreover, the integration of other sensitive films for multi-gas sensor purposes might be an attractive field for future studies.

5.
Sensors (Basel) ; 23(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36991640

ABSTRACT

The quality of wood combustion processes can be effectively improved by achieving the automated control of the combustion air feed. For this purpose, continuous flue gas analysis using in situ sensors is essential. Besides the successfully introduced monitoring of the combustion temperature and the residual oxygen concentration, in this study, in addition, a planar gas sensor is suggested that utilizes the thermoelectric principle to measure the exothermic heat generated by the oxidation of unburnt reducing exhaust gas components such as carbon monoxide (CO) and hydrocarbons (CxHy). The robust design made of high-temperature stable materials is tailored to the needs of flue gas analysis and offers numerous optimization options. Sensor signals are compared to flue gas analysis data from FTIR measurements during wood log batch firing. In general, impressive correlations between both data were found. Discrepancies occur during the cold start combustion phase. They can be attributed to changes in the ambient conditions around the sensor housing.

6.
Sensors (Basel) ; 22(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35591000

ABSTRACT

In recent years, particulate filters have become mandatory in almost all gasoline-powered vehicles to comply with emission standards regarding particulate number. In contrast to diesel applications, monitoring gasoline particulate filters (GPFs) by differential pressure sensors is challenging due to lower soot masses to be deposited in the GPFs. A different approach to determine the soot loading of GPFs is a radio frequency-based sensor (RF sensor). To facilitate sensor development, in previous work, a simulation model was created to determine the RF signal at arbitrary engine operating points. To ensure accuracy, the exact dielectric properties of the soot need to be known. This work has shown how small samples of soot-loaded filter are sufficient to determine the dielectric properties of soot itself using the microwave cavity perturbation method. For this purpose, mixing rules were determined through simulation and measurement, allowing the air and substrate fraction of the sample to be considered. Due to the different geometry of filter substrates compared to crushed soot samples, a different mixing rule had to be derived to calculate the effective filter properties required for the simulation model. The accuracy of the determined mixing rules and the underlying simulation model could be verified by comparative measurements on an engine test bench.


Subject(s)
Air Pollutants , Gasoline , Air Pollutants/analysis , Gasoline/analysis , Microwaves , Particulate Matter/analysis , Soot/analysis , Vehicle Emissions/analysis
7.
Sensors (Basel) ; 20(21)2020 Oct 23.
Article in English | MEDLINE | ID: mdl-33114027

ABSTRACT

Recently, a laboratory setup for microwave-based characterization of powder samples at elevated temperatures and different gas atmospheres was presented. The setup is particularly interesting for operando investigations on typical materials for exhaust gas aftertreatment. By using the microwave cavity perturbation method, where the powder is placed inside a cavity resonator, the change of the resonant properties provides information about changes in the dielectric properties of the sample. However, determining the exact complex permittivity of the powder samples is not simple. Up to now, a simplified microwave cavity perturbation theory had been applied to estimate the bulk properties of the powders. In this study, an extended approach is presented which allows to determine the dielectric properties of the powder materials more correctly. It accounts for the electric field distribution in the resonator, the depolarization of the sample and the effect of the powder filling. The individual method combines findings from simulations and recognized analytical approaches and can be used for investigations on a wide range of materials and sample geometries. This work provides a more accurate evaluation of the dielectric powder properties and has the potential to enhance the understanding of the microwave behavior of storage materials for exhaust gas aftertreatment, especially with regard to the application of microwave-based catalyst state diagnosis.

8.
Sensors (Basel) ; 20(9)2020 May 06.
Article in English | MEDLINE | ID: mdl-32384796

ABSTRACT

Gasoline particulate filters (GPFs) are an appropriate means to meet today's emission standards. As for diesel applications, GPFs can be monitored via differential pressure sensors or using a radio-frequency approach (RF sensor). Due to largely differing soot properties and engine operating modes of gasoline compared to diesel engines (e.g., the possibility of incomplete regenerations), the behavior of both sensor systems must be investigated in detail. For this purpose, extensive measurements on engine test benches are usually required. To simplify the sensor development, a simulation model was developed using COMSOL Multiphysics® that not only allowed for calculating the loading and regeneration process of GPFs under different engine operating conditions but also determined the impact on both sensor systems. To simulate the regeneration behavior of gasoline soot accurately, an oxidation model was developed. To identify the influence of different engine operating points on the sensor behavior, various samples generated at an engine test bench were examined regarding their kinetic parameters using thermogravimetric analysis. Thus, this compared the accuracy of soot mass determination using the RF sensor with the differential pressure method. By simulating a typical driving condition with incomplete regenerations, the effects of the soot kinetics on sensor accuracy was demonstrated exemplarily. Thereby, the RF sensor showed an overall smaller mass determination error, as well as a lower dependence on the soot kinetics.

9.
Sensors (Basel) ; 19(16)2019 Aug 15.
Article in English | MEDLINE | ID: mdl-31443256

ABSTRACT

Recently, radio frequency (RF) technology was introduced as a tool to determine the oxygen storage level of a three-way catalyst (TWC) for gasoline vehicles. Previous studies on the investigation of commercial catalysts mostly use only the resonant frequency to describe the correlation of oxygen storage level and RF signal. For the first time this study presents a comparison under defined laboratory conditions considering both, resonance frequency and also the quality factor as measurands. Furthermore, various advantages over the sole use of the resonant frequency in the technical application are discussed. Experiments with Ø4.66'' catalysts and Ø1.66'' catalyst cores with alternating (rich/lean) gas compositions showed that the relative change in signal amplitude due to a change in oxygen storage is about 100 times higher for the inverse quality factor compared to the resonant frequency. In addition, the quality factor reacts more sensitively to the onset of the oxygen-storage ability, and delivers precise information about the necessary temperature, which is not possible when evaluating the resonant frequency due to the low signal amplitude. As investigations on aged catalysts confirm, the quality factor also provides a new approach to determine operando the ageing state of a TWC.

10.
Sensors (Basel) ; 18(10)2018 Oct 19.
Article in English | MEDLINE | ID: mdl-30347652

ABSTRACT

Particulate matter sensors are of interest for application in the exhaust of any combustion processes, especially for automotive aftertreatment systems. Conductometric soot sensors have been serialized recently. They comprise planar interdigital electrodes (IDE) on an insulating substrate. Between the IDEs, a voltage is applied. Soot deposition is accelerated by the resulting electric field due to electrophoresis. With increasing soot deposition, the conductance between the IDE increases. The timely derivative of the conductance can serve as a sensor signal, being a function of the deposition rate. An increasing voltage between the IDE would be useful for detecting low particle exhausts. In the present study, the influence of the applied voltage and the sensor temperature on the soot deposition is investigated. It turned out that the maximum voltage is limited, since the soot film is heated by the resulting current. An internally caused thermophoresis that reduces the rate of soot deposition on the substrate follows. It reduces both the linearity of the response and the sensitivity. These findings may be helpful for the further development of conductometric soot sensors for automotive exhausts, probably also to determine real driving emissions of particulate matter.

11.
Sensors (Basel) ; 17(12)2017 Nov 28.
Article in English | MEDLINE | ID: mdl-29182589

ABSTRACT

Current developments in exhaust gas aftertreatment led to a huge mistrust in diesel driven passenger cars due to their NOx emissions being too high. The selective catalytic reduction (SCR) with ammonia (NH3) as reducing agent is the only approach today with the capability to meet upcoming emission limits. Therefore, the radio-frequency-based (RF) catalyst state determination to monitor the NH3 loading on SCR catalysts has a huge potential in emission reduction. Recent work on this topic proved the basic capability of this technique under realistic conditions on an engine test bench. In these studies, an RF system calibration for the serial type SCR catalyst Cu-SSZ-13 was developed and different approaches for a temperature dependent NH3 storage were determined. This paper continues this work and uses a fully calibrated RF-SCR system under transient conditions to compare different directly measured and controlled NH3 storage levels, and NH3 target curves. It could be clearly demonstrated that the right NH3 target curve, together with a direct control on the desired level by the RF system, is able to operate the SCR system with the maximum possible NOx conversion efficiency and without NH3 slip.

12.
Sensors (Basel) ; 17(10)2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29064438

ABSTRACT

A planar microstrip ring resonator structure on alumina was developed using the commercial FEM software COMSOL. Design parameters were evaluated, eventually leading to an optimized design of a miniaturized microwave gas sensor. The sensor was covered with a zeolite film. The device was successfully operated at around 8.5 GHz at room temperature as a humidity sensor. In the next step, an additional planar heater will be included on the reverse side of the resonator structure to allow for testing of gas-sensitive materials under sensor conditions.

13.
Sensors (Basel) ; 17(7)2017 Jul 12.
Article in English | MEDLINE | ID: mdl-28704929

ABSTRACT

The upcoming more stringent automotive emission legislations and current developments have promoted new technologies for more precise and reliable catalyst control. For this purpose, radio-frequency-based (RF) catalyst state determination offers the only approach for directly measuring the NH3 loading on selective catalytic reduction (SCR) catalysts and the state of other catalysts and filter systems. Recently, the ability of this technique to directly control the urea dosing on a current NH3 storing zeolite catalyst has been demonstrated on an engine dynamometer for the first time and this paper continues that work. Therefore, a well-known serial-type and zeolite-based SCR catalyst (Cu-SSZ-13) was investigated under deliberately chosen high space velocities. At first, the full functionality of the RF system with Cu-SSZ-13 as sample was tested successfully. By direct RF-based NH3 storage control, the influence of the storage degree on the catalyst performance, i.e., on NOx conversion and NH3 slip, was investigated in a temperature range between 250 and 400 °C. For each operation point, an ideal and a critical NH3 storage degree was found and analyzed in the whole temperature range. Based on the data of all experimental runs, temperature dependent calibration functions were developed as a basis for upcoming tests under transient conditions. Additionally, the influence of exhaust humidity was observed with special focus on cold start water and its effects to the RF signals.

14.
Sensors (Basel) ; 17(2)2017 Feb 18.
Article in English | MEDLINE | ID: mdl-28218700

ABSTRACT

Due to increasingly tighter emission limits for diesel and gasoline engines, especially concerning particulate matter emissions, particulate filters are becoming indispensable devices for exhaust gas after treatment. Thereby, for an efficient engine and filter control strategy and a cost-efficient filter design, reliable technologies to determine the soot load of the filters and to measure particulate matter concentrations in the exhaust gas during vehicle operation are highly needed. In this study, different approaches for soot sensing are compared. Measurements were conducted on a dynamometer diesel engine test bench with a diesel particulate filter (DPF). The DPF was monitored by a relatively new microwave-based approach. Simultaneously, a resistive type soot sensor and a Pegasor soot sensing device as a reference system measured the soot concentration exhaust upstream of the DPF. By changing engine parameters, different engine out soot emission rates were set. It was found that the microwave-based signal may not only indicate directly the filter loading, but by a time derivative, the engine out soot emission rate can be deduced. Furthermore, by integrating the measured particulate mass in the exhaust, the soot load of the filter can be determined. In summary, all systems coincide well within certain boundaries and the filter itself can act as a soot sensor.

15.
Sensors (Basel) ; 15(11): 28796-806, 2015 Nov 13.
Article in English | MEDLINE | ID: mdl-26580621

ABSTRACT

Soot sensors are required for on-board diagnostics (OBD) of automotive diesel particulate filters (DPF) to detect filter failures. Widely used for this purpose are conductometric sensors, measuring an electrical current or resistance between two electrodes. Soot particles deposit on the electrodes, which leads to an increase in current or decrease in resistance. If installed upstream of a DPF, the "engine-out" soot emissions can also be determined directly by soot sensors. Sensors were characterized in diesel engine real exhausts under varying operation conditions and with two different kinds of diesel fuel. The sensor signal was correlated to the actual soot mass and particle number, measured with an SMPS. Sensor data and soot analytics (SMPS) agreed very well, an impressing linear correlation in a double logarithmic representation was found. This behavior was even independent of the used engine settings or of the biodiesel content.

16.
Sensors (Basel) ; 11(3): 2982-91, 2011.
Article in English | MEDLINE | ID: mdl-22163780

ABSTRACT

A study on the application of V(2)O(5)/WO(3)/TiO(2) (VWT) as the sensitive material for resistive-type SO(2) sensor was conducted, based on the fact that VWT is a well-known catalyst material for good selective catalytic nitrogen oxide reduction with a proven excellent durability in exhaust gases. The sensors fabricated in this study are planar ones with interdigitated electrodes of Au or Pt. The vanadium content of the utilized VWT is 1.5 or 3.0 wt%. The resistance of VWT decreases with an increasing SO(2) concentration in the range from 20 ppm to 5,000 ppm. The best sensor response to SO(2) occurs at 400 °C using Au electrodes. The sensor response value is independent on the amount of added vanadium but dependent on the electrode materials at 400 °C. These results are discussed and a sensing mechanism is discussed.


Subject(s)
Electrochemical Techniques/instrumentation , Oxides/chemistry , Sulfur Dioxide/analysis , Titanium/chemistry , Tungsten/chemistry , Vanadium Compounds/chemistry , Electric Impedance , Electrodes , Oxygen/analysis , Temperature
17.
Sensors (Basel) ; 11(8): 7736-48, 2011.
Article in English | MEDLINE | ID: mdl-22164042

ABSTRACT

Zeolites are promising materials in the field of gas sensors. In this technology-oriented paper, a planar setup for potentiometric hydrocarbon and hydrogen gas sensors using zeolites as ionic sodium conductors is presented, in which the Pt-loaded Na-ZSM-5 zeolite is applied using a thick-film technique between two interdigitated gold electrodes and one of them is selectively covered for the first time by an electroplated chromium oxide film. The influence of the sensor temperature, the type of hydrocarbons, the zeolite film thickness, and the chromium oxide film thickness is investigated. The influence of the zeolite on the sensor response is briefly discussed in the light of studies dealing with zeolites as selectivity-enhancing cover layers.


Subject(s)
Biosensing Techniques , Electrochemistry/methods , Zeolites/chemistry , Cations , Chromium Compounds/chemistry , Electrodes , Electroplating , Gases , Gold , Hydrogen , Materials Testing , Microscopy, Electron, Scanning/methods , Models, Chemical , Temperature
18.
Sensors (Basel) ; 10(3): 1589-98, 2010.
Article in English | MEDLINE | ID: mdl-22294888

ABSTRACT

In order to reduce the tailpipe particulate matter emissions of Diesel engines, Diesel particulate filters (DPFs) are commonly used. Initial studies using a conductometric soot sensor to monitor their filtering efficiency, i.e., to detect a malfunction of the DPF, are presented. The sensors consist of a planar substrate equipped with electrodes on one side and with a heater on the other. It is shown that at constant speed-load points, the time until soot percolation occurs or the resistance itself are reproducible means that can be well correlated with the filtering efficiency of a DPF. It is suggested to use such a sensor setup for the detection of a DPF malfunction.


Subject(s)
Conductometry/instrumentation , Particulate Matter/analysis , Soot/analysis , Vehicle Emissions/analysis , Automobiles , Conductometry/methods , Electrodes , Filtration
19.
Sensors (Basel) ; 9(3): 1574-89, 2009.
Article in English | MEDLINE | ID: mdl-22573973

ABSTRACT

Several metal-organic framework (MOF) materials were under investigated to test their applicability as sensor materials for impedimetric gas sensors. The materials were tested in a temperature range of 120 °C - 240 °C with varying concentrations of O(2), CO(2), C(3)H(8), NO, H(2), ethanol and methanol in the gas atmosphere and under different test gas humidity conditions. Different sensor configurations were studied in a frequency range of 1 Hz -1 MHz and time-continuous measurements were performed at 1 Hz. The materials did not show any impedance response to O(2), CO(2), C(3)H(8), NO, or H(2) in the gas atmospheres, although for some materials a significant impedance decrease was induced by a change of the ethanol or methanol concentration in the gas phase. Moreover, pronounced promising and reversible changes in the electric properties of a special MOF material were monitored under varying humidity, with a linear response curve at 120 °C. Further investigations were carried out with differently doped MOF materials of this class, to evaluate the influence of special dopants on the sensor effect.

20.
Sensors (Basel) ; 8(12): 7904-7916, 2008 Dec 05.
Article in English | MEDLINE | ID: mdl-27873966

ABSTRACT

Due to increasing environmental concerns the need for inexpensive selective gas sensors is increasing. This work deals with transferring a novel zeolite-based impedimetric hydrocarbon gas sensor principle, which has been originally manufactured in a costly combination of photolithography, thin-film processes, and thick-film processes to a lowcost technology comprising only thick-film processes and one electroplating step. The sensing effect is based on a thin chromium oxide layer between the interdigital electrodes and a Pt-loaded ZSM-5 zeolite film. When hydrocarbons are present in the sensor ambient, the electrical sensor impedance increases strongly and selectively. In the present work, the chromium oxide film is electroplated on Au screen-printed interdigital electrodes and then oxidized to Cr2O3. The electrode area is covered with the screen-printed zeolite. The sensor device is self-heated utilizing a planar platinum heater on the backside. The best sensor performance is obtained at a frequency of 3 Hz at around 350 °C. The good selectivity of the original sensor setup could be confirmed, but a strong cross-sensitivity to ammonia occurs, which might prohibit its original intention for use in automotive exhausts.

SELECTION OF CITATIONS
SEARCH DETAIL
...