Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 90
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 48(46): 5745-7, 2012 Jun 11.
Article in English | MEDLINE | ID: mdl-22552755

ABSTRACT

Confinement of nanometallic Pd within the core of a hyperthermophilic ferritin cage (from Pyrococcus furiosus) is reported. The resulting nanostructured hybrid catalysts can be used for highly specific aerobic oxidation of alcohols in water.


Subject(s)
Ferritins/chemistry , Metal Nanoparticles/chemistry , Palladium/chemistry , Alcohols/chemistry , Catalysis , Oxidation-Reduction , Temperature , Water/chemistry
2.
J Magn Reson ; 210(1): 126-32, 2011 May.
Article in English | MEDLINE | ID: mdl-21444227

ABSTRACT

The 275GHz electron-paramagnetic-resonance spectrometer we reported on in 2004 has been equipped with a new probe head, which contains a cavity especially designed for operation in continuous-wave mode. The sensitivity and signal stability that is achieved with this new probe head is illustrated with 275GHz continuous-wave spectra of a 1mM frozen solution of the complex Fe(III)-ethylenediamine tetra-acetic acid and of 10mM frozen solutions of the protein rubredoxin, which contains Fe(3+) in its active site, from three different organisms. The high quality of the spectra of the rubredoxins allows the determination of the zero-field-splitting parameters with an accuracy of 0.5GHz. The success of our approach results partially from the enhanced absolute sensitivity, which can be reached using a single-mode cavity. At least as important is the signal stability that we were able to achieve with the new probe head.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Ferrous Compounds/chemistry , Rubredoxins/chemistry , Anisotropy , Edetic Acid/chemistry , Electron Spin Resonance Spectroscopy/instrumentation , Equipment Design , Sensitivity and Specificity , Solutions/chemistry , Spin Labels
3.
Biochem Soc Trans ; 33(Pt 1): 12-4, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15667251

ABSTRACT

The physiological significance of the generic reaction H(2)<-->2[H] is not always clear because hydrogenases may function in the breakdown of molecular hydrogen or in its synthesis or in both directions. Fe-hydrogenases have nevertheless been most often associated with proton reduction and NiFe-hydrogenases with hydrogen oxidation. A re-determination of the K(M) of H(2) oxidation by Pyrococcus furiosus NiFe-hydrogenase-I and by Desulfovibrio vulgaris Fe-hydrogenase suggests that affinity for hydrogen has been seriously underestimated and that the kinetics of hydrogen activation in relation to the directionality of hydrogenases should be re-evaluated.


Subject(s)
Hydrogen/metabolism , Hydrogenase/metabolism , Kinetics , Oxidation-Reduction
4.
FEBS Lett ; 531(2): 335-8, 2002 Nov 06.
Article in English | MEDLINE | ID: mdl-12417337

ABSTRACT

Pyrococcus furiosus ferredoxin is subject to a monomer/dimer equilibrium as a function of ionic strength. At physiological ionic strength, approximately 0.35 M NaCl, the protein is very predominantly homodimer. The monomeric form exhibits impaired electron transfer on glassy carbon; it also has a decreased S=3/2 over S=1/2 ratio as shown by electron paramagnetic resonance spectroscopy. Even following sterilization at 121 degrees C the dimer is stable in denaturing gel electrophoresis.


Subject(s)
Ferredoxins/chemistry , Ferredoxins/physiology , Pyrococcus furiosus , Chromatography, Gel , Dimerization , Electron Spin Resonance Spectroscopy , Electron Transport , Electrophoresis, Polyacrylamide Gel , Ferredoxins/isolation & purification , Osmolar Concentration
5.
Extremophiles ; 5(5): 323-32, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11699646

ABSTRACT

A putative perA gene from Archaeoglobus fulgidus was cloned and expressed in Escherichia coli BL21(DE3), and the recombinant catalase-peroxidase was purified to homogeneity. The enzyme is a homodimer with a subunit molecular mass of 85 kDa. UV-visible spectroscopic analysis indicated the presence of protoheme IX as a prosthetic group (ferric heme), in a stoichiometry of 0.25 heme per subunit. Electron paramagnetic resonance analysis confirmed the presence of ferric heme and identified the proximal axial ligand as a histidine. The enzyme showed both catalase and peroxidase activity with pH optima of 6.0 and 4.5, respectively. Optimal temperatures of 70 degrees C and 80 degrees C were found for the catalase and peroxidase activity, respectively. The catalase activity strongly exceeded the peroxidase activity, with Vmax values of 9600 and 36 U mg(-1), respectively. Km values for H2O2 of 8.6 and 0.85 mM were found for catalase and peroxidase, respectively. Common heme inhibitors such as cyanide, azide, and hydroxylamine inhibited peroxidase activity. However, unlike all other catalase-peroxidases, the enzyme was also inhibited by 3-amino-1,2,4-triazole. Although the enzyme exhibited a high thermostability, rapid inactivation occurred in the presence of H2O2, with half-life values of less than 1 min. This is the first catalase-peroxidase characterized from a hyperthermophilic microorganism.


Subject(s)
Archaeoglobus fulgidus/enzymology , Catalase/chemistry , Catalase/metabolism , Peroxidases/chemistry , Peroxidases/metabolism , Archaeoglobus fulgidus/genetics , Catalase/antagonists & inhibitors , Catalase/genetics , Cloning, Molecular , Electron Spin Resonance Spectroscopy , Enzyme Inhibitors/pharmacology , Genes, Archaeal , Hot Temperature , Kinetics , Peroxidases/antagonists & inhibitors , Peroxidases/genetics , Phylogeny , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Analysis, Protein , Spectrophotometry
6.
Anal Biochem ; 297(1): 71-8, 2001 Oct 01.
Article in English | MEDLINE | ID: mdl-11567529

ABSTRACT

Recent crystal structure determinations accelerated the progress in the biochemistry of tungsten-containing enzymes. In order to characterize these enzymes, a sensitive determination of this metal in protein-containing samples is necessary. An electroanalytical tungsten determination has successfully been adapted to determine the tungsten and molybdenum content in enzymes. The tungsten and molybdenum content can be measured simultaneously from 1 to 10 microg of purified protein with little or no sample handling. More crude protein samples require precipitation of interfering surface active material with 10% perchloric acid. This method affords the isolation of novel molybdenum- and tungsten-containing proteins via molybdenum and tungsten monitoring of column fractions, without using radioactive isotopes. A screening of soluble proteins from Pyrococcus furiosus for tungsten, using anion-exchange column chromatography to separate the proteins, has been performed. The three known tungsten-containing enzymes from P. furiosus were recovered with this screening.


Subject(s)
Chemistry Techniques, Analytical/methods , Electrochemistry/methods , Metalloproteins/chemistry , Molybdenum/analysis , Tungsten/analysis , Chemical Precipitation , Chromatography, Ion Exchange , Enzymes/chemistry , Enzymes/isolation & purification , Enzymes/metabolism , Metalloproteins/isolation & purification , Metalloproteins/metabolism , Perchlorates/metabolism , Pyrococcus furiosus/enzymology , Solubility
7.
Biochem J ; 356(Pt 3): 851-8, 2001 Jun 15.
Article in English | MEDLINE | ID: mdl-11389694

ABSTRACT

The napB gene of the pathogenic bacterium Haemophilus influenzae encodes a dihaem cytochrome c, the small subunit of a heterodimeric periplasmic nitrate reductase similar to those found in other bacteria. In order to obtain sufficient protein for biophysical studies, we aimed to overproduce the recombinant dihaem protein in Escherichia coli. Initial expression experiments indicated that the NapB signal peptide was not cleaved by the leader peptidase of the host organism. Apocytochrome was formed under aerobic, semi-aerobic and anaerobic growth conditions in either Luria--Bertani or minimal salts medium. The highest amounts of apo-NapB were produced in the latter medium, and the bulk was inserted into the cytoplasmic membrane. The two haem groups were covalently attached to the pre-apocytochrome only under anaerobic growth conditions, and with 2.5 mM nitrite or at least 10 mM nitrate supplemented to the minimal salts growth medium. In order to obtain holocytochrome, the gene sequence encoding mature NapB was cloned in-frame with the E. coli ompA (outer membrane protein A) signal sequence. Under anaerobic conditions, NapB was secreted into the periplasmic space, with the OmpA signal peptide being correctly processed and with both haem c groups attached covalently. Unless expressed in the DegP-protease-deficient strain HM125, some of the recombinant NapB polypeptides were N-terminally truncated as a result of proteolytic activity. Under aerobic growth conditions, co-expression with the E. coli ccm (cytochrome c maturation) genes resulted in a higher yield of holocytochrome c. The pure recombinant NapB protein showed absorption maxima at 419, 522 and 550 nm in the reduced form. The midpoint reduction potentials of the two haem groups were determined to be -25 mV and -175 mV. These results support our hypothesis that the Nap system fulfils a nitrate-scavenging role in H. influenzae.


Subject(s)
Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Haemophilus influenzae/metabolism , Bacterial Proteins/isolation & purification , Base Sequence , DNA Primers , Electrophoresis, Polyacrylamide Gel , Oxidation-Reduction , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism
8.
J Biol Chem ; 276(25): 22850-6, 2001 Jun 22.
Article in English | MEDLINE | ID: mdl-11301319

ABSTRACT

Phenylalanine hydroxylase (PAH) is a tetrahydrobiopterin (BH(4)) and non-heme iron-dependent enzyme that hydroxylates L-Phe to L-Tyr. The paramagnetic ferric iron at the active site of recombinant human PAH (hPAH) and its midpoint potential at pH 7.25 (E(m)(Fe(III)/Fe(II))) were studied by EPR spectroscopy. Similar EPR spectra were obtained for the tetrameric wild-type (wt-hPAH) and the dimeric truncated hPAH(Gly(103)-Gln(428)) corresponding to the "catalytic domain." A rhombic high spin Fe(III) signal with a g value of 4.3 dominates the EPR spectra at 3.6 K of both enzyme forms. An E(m) = +207 +/- 10 mV was measured for the iron in wt-hPAH, which seems to be adequate for a thermodynamically feasible electron transfer from BH(4) (E(m) (quinonoid-BH(2)/BH(4)) = +174 mV). The broad EPR features from g = 9.7-4.3 in the spectra of the ligand-free enzyme decreased in intensity upon the addition of L-Phe, whereas more axial type signals were observed upon binding of 7,8-dihydrobiopterin (BH(2)), the stable oxidized form of BH(4), and of dopamine. All three ligands induced a decrease in the E(m) value of the iron to +123 +/- 4 mV (L-Phe), +110 +/- 20 mV (BH(2)), and -8 +/- 9 mV (dopamine). On the basis of these data we have calculated that the binding affinities of L-Phe, BH(2), and dopamine decrease by 28-, 47-, and 5040-fold, respectively, for the reduced ferrous form of the enzyme, with respect to the ferric form. Interestingly, an E(m) value comparable with that of the ligand-free, resting form of wt-hPAH, i.e. +191 +/- 11 mV, was measured upon the simultaneous binding of both L-Phe and BH(2), representing an inactive model for the iron environment under turnover conditions. Our findings provide new information on the redox properties of the active site iron relevant for the understanding of the reductive activation of the enzyme and the catalytic mechanism.


Subject(s)
Biopterins/metabolism , Dopamine/metabolism , Iron/metabolism , Phenylalanine Hydroxylase/metabolism , Biopterins/analogs & derivatives , Catalysis , Electron Spin Resonance Spectroscopy , Humans , Ligands , Models, Molecular , Phenylalanine Hydroxylase/chemistry , Protein Binding , Protein Conformation , Recombinant Proteins/metabolism , Substrate Specificity
9.
J Comput Chem ; 22(15): 1732-1749, 2001 Nov 30.
Article in English | MEDLINE | ID: mdl-12116408

ABSTRACT

Oxidation of alcohols by direct hydride transfer to the pyrroloquinoline quinone (PQQ) cofactor of quinoprotein alcohol dehydrogenases has been studied using ab initio quantum mechanical methods. Energies and geometries were calculated at the 6-31G(d,p) level of theory. Comparison of the results obtained for PQQ and several derivatives with available structural and spectroscopic data served to judge the feasibility of the calculations. The role of calcium in the enzymatic reaction mechanism has been investigated. Transition state searches have been conducted at the semiempirical and STO-3G(d) level of theory. It is concluded that hydride transfer from the Calpha-position of the substrate alcohol (or aldehyde) directly to the C(5) carbon of PQQ is energetically feasible. Copyright 2001 John Wiley & Sons, Inc. J Comput Chem 22: 1732-1749, 2001

10.
Biochemistry ; 39(49): 15044-54, 2000 Dec 12.
Article in English | MEDLINE | ID: mdl-11106482

ABSTRACT

The three-dimensional structure of the hybrid cluster protein from Desulfovibrio vulgaris (Hildenborough) has been determined at 1.6 A resolution using synchrotron X-ray radiation. The protein can be divided into three domains: an N-terminal mainly alpha-helical domain and two similar domains comprising a central beta-sheet flanked by alpha-helices. The protein contains two 4Fe clusters with an edge-to-edge distance of 10.9 A. Four cysteine residues at the N-terminus of the protein are ligands to the iron atoms of a conventional [4Fe-4S] cubane cluster. The second cluster has an unusual asymmetric structure and has been named the hybrid cluster to reflect the variety of protein ligands, namely two mu-sulfido bridges, two mu(2)-oxo bridges, and a further disordered bridging ligand. Anomalous differences in data collected at 1.488 A and close to the iron edge at 1.743 A have been used to confirm the identity of the metal and sulfur atoms. The hybrid cluster is buried in the center of the protein, but is accessible through a large hydrophobic cavity that runs the length of domain 3. Hydrophobic channels have previously been identified as access routes to the active centers in redox enzymes with gaseous substrates. The hybrid cluster is also accessible by a hydrophilic channel. The [4Fe-4S] cubane cluster is close to an indentation on the surface of the protein and can also be approached on the opposite side by a long solvent channel. At the present time, neither the significance of these channels nor, indeed, the function of the hybrid cluster protein is known.


Subject(s)
Bacterial Proteins/chemistry , Desulfovibrio vulgaris , Iron-Sulfur Proteins/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Fourier Analysis , Models, Molecular , Molecular Sequence Data , Protein Structure, Tertiary , Sequence Homology, Amino Acid , Synchrotrons
11.
Eur J Biochem ; 267(22): 6541-51, 2000 Nov.
Article in English | MEDLINE | ID: mdl-11054105

ABSTRACT

The genome of Pyrococcus furiosus contains the putative mbhABCDEFGHIJKLMN operon for a 14-subunit transmembrane complex associated with a Ni-Fe hydrogenase. Ten ORFs (mbhA-I and mbhM) encode hydrophobic, membrane-spanning subunits. Four ORFs (mbhJKL and mbhN) encode putative soluble proteins. Two of these correspond to the canonical small and large subunit of Ni-Fe hydrogenase, however, the small subunit can coordinate only a single iron-sulfur cluster, corresponding to the proximal [4Fe-4S] cubane. The structural genes for the small and the large subunits, mbhJ and mbhL, are separated in the genome by a third ORF, mbhK, encoding a protein of unknown function without Fe/S binding. The fourth ORF, mbhN, encodes a 2[4Fe-4S] protein. With P. furiosus soluble [4Fe-4S] ferredoxin as the electron donor the membranes produce H2, and this activity is retained in an extracted core complex of the mbh operon when solubilized and partially purified under mild conditions. The properties of this membrane-bound hydrogenase are unique. It is rather resistant to inhibition by carbon monoxide. It also exhibits an extremely high ratio of H2 evolution to H2 uptake activity compared with other hydrogenases. The activity is sensitive to inhibition by dicyclohexylcarbodiimide, an inhibitor of NADH dehydrogenase (complex I). EPR of the reduced core complex is characteristic for interacting iron-sulfur clusters with Em approximately -0.33 V. The genome contains a second putative operon, mbxABCDFGHH'MJKLN, for a multisubunit transmembrane complex with strong homology to the mbh operon, however, with a highly unusual putative binding motif for the Ni-Fe-cluster in the large hydrogenase subunit. Kinetic studies of membrane-bound hydrogenase, soluble hydrogenase and sulfide dehydrogenase activities allow the formulation of a comprehensive working hypothesis of H2 metabolism in P. furiosus in terms of three pools of reducing equivalents (ferredoxin, NADPH, H2) connected by devices for transduction, transfer, recovery and safety-valving of energy.


Subject(s)
Cytochrome c Group/metabolism , Hydrogen/metabolism , Hydrogenase/genetics , Operon , Oxidoreductases/metabolism , Pyrococcus furiosus/enzymology , Pyrococcus furiosus/genetics , Acetates/metabolism , Amino Acid Sequence , Dicyclohexylcarbodiimide/pharmacology , Fermentation , Genome, Bacterial , Hydrogenase/chemistry , Hydrogenase/metabolism , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/genetics , Iron-Sulfur Proteins/metabolism , Kinetics , Molecular Sequence Data , Open Reading Frames , Protein Subunits , Sequence Alignment , Sequence Homology, Amino Acid , Substrate Specificity
12.
J Biol Inorg Chem ; 5(4): 527-34, 2000 Aug.
Article in English | MEDLINE | ID: mdl-10968624

ABSTRACT

The consecutive structural genes for the iron-sulfur flavoenzyme sulfide dehydrogenase, sudB and sudA, have been identified in the genome of Pyrococcus furiosus. The translated sequences encode a heterodimeric protein with an alpha-subunit, SudA, of 52598 Da and a beta-subunit, SudB, of 30686 Da. The alpha-subunit carries a FAD, a putative nucleotide binding site for NADPH, and a [2Fe-2S]2+,+ prosthetic group. The latter exhibit EPR g-values, 2.035, 1.908, 1.786, and reduction potential, Em,8 = +80 mV, reminiscent of Rieske-type clusters; however, comparative sequence analysis indicates that this cluster is coordinated by a novel motif of one Asp and three Cys ligands. The motif is not only found in the genome of hyperthermophilic archaea and hyperthermophilic bacteria, but also in that of mesophilic Treponema pallidum. The beta-subunit of sulfide dehydrogenase contains another FAD, another putative binding site for NADPH, a [3Fe-4S]+,0 cluster, and a [4Fe-4S]2+,+ cluster. The 3Fe cluster has an unusually high reduction potential, Em,8 = +230 mV. The reduced 4Fe cluster exhibits a complex EPR signal, presumably resulting from magnetic interaction of its S = 1/2 spin with the S=2 spin of the reduced 3Fe cluster. The 4Fe cluster can be reduced with deazaflavin/EDTA/light but not with sodium dithionite; however, it is readily reduced with NADPH. SudA is highly homologous to KOD1-GO-GAT (or KOD1-GltA), a single-gene encoded protein in Pyrococcus kodakaraensis, which has been putatively identified as hyperthermophilic glutamate synthase. However, P. furiosus sulfide dehydrogenase does not have glutamate synthase activity. SudB is highly homologous to HydG, the gamma-subunit of P. furiosus NiFe hydrogenase. The latter enzyme also has sulfide dehydrogenase activity. The P. furiosus genome contains a second set of consecutive genes, sudY and sudX, with very high homology to the sudB and sudA genes, and possibly encoding a sulfide dehydrogenase isoenzyme. Each subunit of sulfide dehydrogenase is a primary structural paradigm for a different class of iron-sulfur flavoproteins.


Subject(s)
Archaeal Proteins/chemistry , Cytochrome c Group/chemistry , Iron-Sulfur Proteins/chemistry , Oxidoreductases/chemistry , Pyrococcus furiosus/enzymology , Amino Acid Motifs , Amino Acid Sequence , Archaeal Proteins/genetics , Cytochrome c Group/genetics , Cytochrome c Group/metabolism , Electron Spin Resonance Spectroscopy , Iron-Sulfur Proteins/genetics , Ligands , Molecular Sequence Data , Oxidation-Reduction , Oxidoreductases/genetics , Oxidoreductases/metabolism , Protein Structure, Quaternary , Pyrococcus furiosus/genetics , Sequence Alignment
13.
Eur J Biochem ; 267(12): 3640-6, 2000 Jun.
Article in English | MEDLINE | ID: mdl-10848981

ABSTRACT

Porcine liver dihydropyrimidine dehydrogenase is a homodimeric iron-sulfur flavoenzyme that catalyses the first and rate-limiting step of pyrimidine catabolism. The enzyme subunit contains 16 atoms each of nonheme iron and acid-labile sulfur, which are most likely arranged into four [4Fe-4S] clusters. However, the presence and role of such Fe-S clusters in dihydropyrimidine dehydrogenase is enigmatic, because they all appeared to be redox-inactive during absorbance-monitored titrations of the enzyme with its physiological substrates. In order to obtain evidence for the presence and properties of the postulated four [4Fe-4S] clusters of dihydropyrimidine dehydrogenase, a series of EPR-monitored redox titrations of the enzyme under a variety of conditions was carried out. No EPR-active species was present in the enzyme 'as isolated'. In full agreement with absorbance-monitored experiments, only a small amount of neutral flavin radical was detected when the enzyme was incubated with excess NADPH or dihydrouracil under anaerobic conditions. Reductive titrations of dihydropyrimidine dehydrogenase with dithionite at pH 9.5 and photochemical reduction at pH 7.5 and 9.5 in the presence of deazaflavin and EDTA led to the conclusion that the enzyme contains two [4Fe-4S]2+,1+ clusters, which both exhibit a midpoint potential of approximately -0.44 V (pH 9.5). The two clusters are most likely close in space, as demonstrated by the EPR signals which are consistent with dipolar interaction of two S = 1/2 species including a half-field signal around g approximately 3.9. Under no circumstances could the other two postulated Fe-S centres be detected by EPR spectroscopy. It is concluded that dihydropyrimidine dehydrogenase contains two [4Fe-4S] clusters, presumably determined by the C-terminal eight-iron ferredoxin-like module of the protein, whose participation in the enzyme-catalysed redox reaction is unlikely in light of the low midpoint potential measured. The presence of two additional [4Fe-4S] clusters in dihydropyrimidine dehydrogenase is proposed based on thorough chemical analyses on various batches of the enzyme and sequence analyses. The N-terminal region of dihydropyrimidine dehydrogenase is similar to the glutamate synthase beta subunit, which has been proposed to contain most, if not all, the cysteinyl ligands that participate in the formation of the [4Fe-4S] clusters of the glutamate synthase holoenzyme. It is proposed that the motif formed by the Cys residues at the N-terminus of the glutamate synthase beta subunit, which are conserved in dihydropyrimidine dehydrogenase and in several beta-subunit-like proteins or protein domains, corresponds to a novel fingerprint that allows the formation of [4Fe-4S] clusters of low to very low midpoint potential.


Subject(s)
Iron-Sulfur Proteins/chemistry , Oxidoreductases/chemistry , Amino Acid Sequence , Dihydrouracil Dehydrogenase (NADP) , Dithionite/chemistry , Electron Spin Resonance Spectroscopy , Molecular Sequence Data , NADP/chemistry , Oxidation-Reduction , Photochemistry/methods , Titrimetry , Uracil/analogs & derivatives , Uracil/chemistry
14.
J Biol Chem ; 275(21): 16050-6, 2000 May 26.
Article in English | MEDLINE | ID: mdl-10821858

ABSTRACT

The photosynthetic bacterium Rhodobacter sphaeroides produces a heme protein (SHP), which is an unusual c-type cytochrome capable of transiently binding oxygen during autooxidation. Similar proteins have not only been observed in other photosynthetic bacteria but also in the obligate methylotroph Methylophilus methylotrophus and the metal reducing bacterium Shewanella putrefaciens. A three-dimensional structure of SHP was derived using the multiple isomorphous replacement phasing method. Besides a model for the oxidized state (to 1.82 A resolution), models for the reduced state (2.1 A resolution), the oxidized molecule liganded with cyanide (1. 90 A resolution), and the reduced molecule liganded with nitric oxide (2.20 A resolution) could be derived. The SHP structure represents a new variation of the class I cytochrome c fold. The oxidized state reveals a novel sixth heme ligand, Asn(88), which moves away from the iron upon reduction or when small molecules bind. The distal side of the heme has a striking resemblance to other heme proteins that bind gaseous compounds. In SHP the liberated amide group of Asn(88) stabilizes solvent-shielded ligands through a hydrogen bond.


Subject(s)
Cytochrome c Group/chemistry , Oxygen/metabolism , Rhodobacter sphaeroides/chemistry , Bacterial Proteins/chemistry , Binding Sites , Crystallography, X-Ray , Cyanides/chemistry , Electron Spin Resonance Spectroscopy , Hemeproteins/chemistry , Models, Molecular , Molecular Sequence Data , Nitric Oxide/chemistry , Protein Binding , Sequence Homology, Amino Acid
15.
Eur J Biochem ; 267(3): 666-76, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10651802

ABSTRACT

Hybrid-cluster proteins ('prismane proteins') have previously been isolated and characterized from strictly anaerobic sulfate-reducing bacteria. These proteins contain two types of Fe/S clusters unique in biological systems: a [4Fe-4S] cubane cluster with spin-admixed S = 3/2 ground-state paramagnetism and a novel type of hybrid [4Fe-2S-2O] cluster, which can attain four redox states. Genomic sequencing reveals that genes encoding putative hybrid-cluster proteins are present in a range of bacterial and archaeal species. In this paper we describe the isolation and spectroscopic characterization of the hybrid-cluster protein from Escherichia coli. EPR spectroscopy shows the presence of a hybrid cluster in the E. coli protein with characteristics similar to those in the proteins of anaerobic sulfate reducers. EPR spectra of the reduced E. coli hybrid-cluster protein, however, give evidence for the presence of a [2Fe-2S] cluster instead of a [4Fe-4S] cluster. The hcp gene encoding the hybrid-cluster protein in E. coli and other facultative anaerobes occurs, in contrast with hcp genes in obligate anaerobic bacteria and archaea, in a small operon with a gene encoding a putative NADH oxidoreductase. This NADH oxidoreductase was also isolated and shown to contain FAD and a [2Fe-2S] cluster as cofactors. It catalysed the reduction of the hybrid-cluster protein with NADH as an electron donor. Midpoint potentials (25 degrees C, pH 7.5) for the Fe/S clusters in both proteins indicate that electrons derived from the oxidation of NADH (Em NADH/NAD+ couple: -320 mV) are transferred along the [2Fe-2S] cluster of the NADH oxidoreductase (Em = -220 mV) and the [2Fe-2S] cluster of the hybrid-cluster protein (Em = -35 mV) to the hybrid cluster (Em = -50, +85 and +365 mV for the three redox transitions). The physiological function of the hybrid-cluster protein has not yet been elucidated. The protein is only detected in the facultative anaerobes E. coli and Morganella morganii after cultivation under anaerobic conditions in the presence of nitrate or nitrite, suggesting a role in nitrate-and/or nitrite respiration.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Escherichia coli/metabolism , Iron-Sulfur Proteins , NADH, NADPH Oxidoreductases/chemistry , NADH, NADPH Oxidoreductases/metabolism , Amino Acid Sequence , Archaea/genetics , Bacterial Proteins/genetics , Base Sequence , DNA Primers/genetics , Electron Spin Resonance Spectroscopy , Escherichia coli/genetics , Gene Expression , Genes, Bacterial , Molecular Sequence Data , Morganella morganii/genetics , Morganella morganii/metabolism , NADH, NADPH Oxidoreductases/genetics , Oxidation-Reduction , Sequence Homology, Amino Acid
16.
FEBS Lett ; 462(1-2): 66-70, 1999 Nov 26.
Article in English | MEDLINE | ID: mdl-10580093

ABSTRACT

Pyrococcus furiosus glyceraldehyde 3-phosphate oxidoreductase has been characterized using EPR-monitored redox titrations. Two different W signals were found. W(1)(5+) is an intermediate species in the catalytic cycle, with the midpoint potentials E(m)(W(6+/5+))=-507 mV and E(m)(W(5+/4+))=-491 mV. W(2)(5+) represents an inactivated species with E(m)(W(6+/5+))=-329 mV. The cubane cluster exhibits both S=3/2 and S=1/2 signals with the same midpoint potential: E(m)([4Fe-4S](2+/1+))=-335 mV. The S=1/2 EPR signal is unusual with all g values below 2.0. The titration results combined with catalytic voltammetry data are consistent with electron transfer from glyceraldehyde 3-phosphate first to the tungsten center, then to the cubane cluster and finally to the ferredoxin.


Subject(s)
Alcohol Oxidoreductases/metabolism , Pyrococcus furiosus/enzymology , Alcohol Oxidoreductases/chemistry , Catalysis , Electron Spin Resonance Spectroscopy , Electron Transport , Glyceraldehyde 3-Phosphate/metabolism , Oxidation-Reduction , Pyrococcus furiosus/metabolism , Titrimetry , Tungsten/metabolism
17.
J Bacteriol ; 181(21): 6706-11, 1999 Nov.
Article in English | MEDLINE | ID: mdl-10542172

ABSTRACT

Strain GR-1 is one of several recently isolated bacterial species that are able to respire by using chlorate or perchlorate as the terminal electron acceptor. The organism performs a complete reduction of chlorate or perchlorate to chloride and oxygen, with the intermediate formation of chlorite. This study describes the purification and characterization of the key enzyme of the reductive pathway, the chlorate and perchlorate reductase. A single enzyme was found to catalyze both the chlorate- and perchlorate-reducing activity. The oxygen-sensitive enzyme was located in the periplasm and had an apparent molecular mass of 420 kDa, with subunits of 95 and 40 kDa in an alpha(3)beta(3) composition. Metal analysis showed the presence of 11 mol of iron, 1 mol of molybdenum, and 1 mol of selenium per mol of heterodimer. In accordance, quantitative electron paramagnetic resonance spectroscopy showed the presence of one [3Fe-4S] cluster and two [4Fe-4S] clusters. Furthermore, two different signals were ascribed to Mo(V). The K(m) values for perchlorate and chlorate were 27 and <5 microM, respectively. Besides perchlorate and chlorate, nitrate, iodate, and bromate were also reduced at considerable rates. The resemblance of the enzyme to nitrate reductases, formate dehydrogenases, and selenate reductase is discussed.


Subject(s)
Gram-Negative Anaerobic Bacteria/enzymology , Oxidoreductases/isolation & purification , Oxidoreductases/metabolism , Perchlorates/metabolism , Sodium Compounds/metabolism , Amino Acid Sequence , Catalysis , Chlorates/metabolism , Electron Spin Resonance Spectroscopy , Gram-Negative Anaerobic Bacteria/growth & development , Molecular Sequence Data , Molecular Weight , Oxidation-Reduction , Oxidoreductases/chemistry , Spectrum Analysis
18.
J Biol Inorg Chem ; 4(3): 284-91, 1999 Jun.
Article in English | MEDLINE | ID: mdl-10439073

ABSTRACT

The sulfhydrogenase complex of Pyrococcus furiosus is an alpha beta gamma delta heterotetramer with both hydrogenase activity (borne by the alpha delta subunits) and sulfur reductase activity (carried by the beta gamma subunits). The beta-subunit contains at least two [4Fe-4S] cubanes and the gamma-subunit contains one [2Fe-2S] cluster and one FAD molecule. The delta-subunit contains three [4Fe-4S] cubanes and the alpha-subunit carries the NiFe dinuclear center. Only three Fe/S signals are observed in EPR-monitored reduction by dithionite, NADPH, or internal substrate upon heating. All other clusters presumably have reduction potentials well below that of the H+/H2 couple. Heat-induced reduction by internal substrate allows, for the first time, EPR monitoring of the NiFe center in a hyperthermophilic hydrogenase, which passes through a number of states, some of which are similar to states previously defined for mesophilic hydrogenases. The complexity of the observed transitions reflects a combination of temperature-dependent activation and temperature-dependent reduction potentials.


Subject(s)
Hydrogenase/chemistry , Hydrogenase/metabolism , Pyrococcus furiosus/enzymology , Amino Acid Sequence , Binding Sites , Electron Spin Resonance Spectroscopy , Hydrogenase/genetics , Oxidation-Reduction , Pyrococcus furiosus/genetics , Sulfur , Temperature
19.
J Biol Chem ; 274(29): 20287-92, 1999 Jul 16.
Article in English | MEDLINE | ID: mdl-10400648

ABSTRACT

ortho-Chlorophenol reductive dehalogenase of the halorespiring Gram-positive Desulfitobacterium dehalogenans was purified 90-fold to apparent homogeneity. The purified dehalogenase catalyzed the reductive removal of a halogen atom from the ortho position of 3-chloro-4-hydroxyphenylacetate, 2-chlorophenol, 2,3-dichlorophenol, 2,4-dichlorophenol, 2,6-dichlorophenol, pentachlorophenol, and 2-bromo-4-chlorophenol with reduced methyl viologen as electron donor. The dechlorination of 3-chloro-4-hydroxyphenylacetate was catalyzed by the enzyme at a Vmax of 28 units/mg protein and a Km of 20 microM. The pH and temperature optimum were 8.2 and 52 degrees C, respectively. EPR analysis indicated one [4Fe-4S] cluster (midpoint redox potential (Em) = -440 mV), one [3Fe-4S] cluster (Em = +70 mV), and one cobalamin per 48-kDa monomer. The Co(I)/Co(II) transition had an Em of -370 mV. Via a reversed genetic approach based on the N-terminal sequence, the corresponding gene was isolated from a D. dehalogenans genomic library, cloned, and sequenced. This revealed the presence of two closely linked genes: (i) cprA, encoding the o-chlorophenol reductive dehalogenase, which contains a twin-arginine type signal sequence that is processed in the purified enzyme; (ii) cprB, coding for an integral membrane protein that could act as a membrane anchor of the dehalogenase. This first biochemical and molecular characterization of a chlorophenol reductive dehalogenase has revealed structural resemblance with haloalkene reductive dehalogenases.


Subject(s)
Bacteria, Anaerobic/enzymology , Gram-Positive Bacteria/enzymology , Oxidoreductases/isolation & purification , Amino Acid Sequence , Bacteria, Anaerobic/physiology , Base Sequence , DNA, Bacterial , Electron Spin Resonance Spectroscopy , Electron Transport , Gram-Positive Bacteria/physiology , Molecular Sequence Data , Oxidation-Reduction , Oxidoreductases/chemistry , Oxidoreductases/genetics , Sequence Homology, Amino Acid , Vitamin B 12/metabolism
20.
Biochemistry ; 37(50): 17598-609, 1998 Dec 15.
Article in English | MEDLINE | ID: mdl-9860876

ABSTRACT

Dihydropyrimidine dehydrogenase catalyzes, in the rate-limiting step of the pyrimidine degradation pathway, the NADPH-dependent reduction of uracil and thymine to dihydrouracil and dihydrothymine, respectively. The porcine enzyme is a homodimeric iron-sulfur flavoprotein (2 x 111 kDa). C671, the residue postulated to be in the uracil binding site and to act as the catalytically essential acidic residue of the enzyme oxidative half-reaction, was replaced by an alanyl residue. The mutant enzyme was overproduced in Escherichia coli DH5alpha cells, purified to homogeneity, and characterized in comparison with the wild-type species. An extinction coefficient of 74 mM-1 cm-1 was determined at 450 nm for the wild-type and mutant enzymes. Chemical analyses of the flavin, iron, and acid-labile sulfur content of the enzyme subunits revealed similar stoichiometries for wild-type and C671A dihydropyrimidine dehydrogenases. One FAD and one FMN per enzyme subunit were found. Approximately 16 iron atoms and 16 acid-labile sulfur atoms were found per wild-type and mutant enzyme subunit. The C671A dihydropyrimidine dehydrogenase mutant exhibited approximately 1% of the activity of the wild-type enzyme, thus preventing its steady-state kinetic analysis. Therefore, the ability of the C671A mutant and, for comparison, of the wild-type enzyme species to interact with reaction substrates, products, or their analogues were studied by absorption spectroscopy. Both enzyme forms did not react with sulfite. The wild-type and mutant enzymes were very similar to each other with respect to the spectral changes induced by binding of the reaction product NADP+ or of its nonreducible analogue 3-aminopyridine dinucleotide phosphate. Uracil also induced qualitatively and quantitatively similar absorbance changes in the visible region of the absorbance spectrum of the two enzyme forms. However, the calculated Kd of the enzyme-uracil complex was significantly higher for the C671A mutant (9.1 +/- 0.7 microM) than for the wild-type dihydropyrimidine dehydrogenase (0.7 +/- 0.09 microM). In line with these observations, the two enzyme forms behaved in a similar way when titrated anaerobically with a NADPH solution. Addition of an up to 10-fold excess of NADPH to both dihydropyrimidine dehydrogenase forms led to absorbance changes consistent with reduction of approximately 0.5 flavin per subunit, with no indication of reduction of the enzyme iron-sulfur clusters. Absorbance changes consistent with reduction of both enzyme flavins were obtained by removing NADP+ with a NADPH-regenerating system. On the contrary, the two enzyme species differed significantly with respect to their reactivity with dihydrouracil. Addition of dihydrouracil to the wild-type enzyme species, under anaerobic conditions, led to absorbance changes that could be interpreted to result from both partial flavin reduction and the formation of a complex between the enzyme and (dihydro)uracil. In contrast, only spectral changes consistent with formation of a complex between the oxidized enzyme and dihydrouracil were observed when a C671A mutant enzyme solution was titrated with this compound. Furthermore, enzyme-monitored turnover experiments were carried out anaerobically in the presence of a limiting amount of NADPH and excess uracil with the two enzyme forms in a stopped-flow apparatus. These experiments directly demonstrated that the substitution of an alanyl residue for C671 in dihydropyrimidine dehydrogenase specifically prevents enzyme-catalyzed reduction of uracil. Finally, sequence analysis of dihydropyrimidine dehydrogenase revealed that it exhibits a modular structure; the N-terminal region, similar to the beta subunit of bacterial glutamate synthases, is proposed to be responsible for NADPH binding and oxidation with reduction of the FAD cofactor of dihydropyrimidine dehydrogenase. The central region, similar to the FMN subunit of dihydroorotate dehydrogenases, is likely to harbor the site o


Subject(s)
Oxidoreductases/chemistry , Oxidoreductases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Amino Acid Sequence , Animals , Catalysis , Cattle , Dihydrouracil Dehydrogenase (NADP) , Humans , Kinetics , Molecular Sequence Data , Mutagenesis, Site-Directed , NADP/metabolism , Oxidation-Reduction , Oxidoreductases/genetics , Photochemistry , Pyrimidine Nucleotides/metabolism , Recombinant Proteins/biosynthesis , Recombinant Proteins/isolation & purification , Sequence Analysis , Spectrum Analysis/methods , Sulfites/metabolism , Swine , Uracil/analogs & derivatives , Uracil/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...