Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Proc Biol Sci ; 291(2022): 20240371, 2024 May.
Article in English | MEDLINE | ID: mdl-38714210

ABSTRACT

Naked mole-rats (Heterocephalus glaber) live in large colonies with one breeding female (queen), one to three breeding males (BMs) and the remainder are non-reproductive subordinates. The animals have a linear dominance rank with the breeders at the top of the hierarchy. We investigated how dominance rank in naked mole-rats differs with exploration (the propensity to explore a novel environment) and related endocrine markers. Exploration behaviour, faecal progestagen metabolite (fPM), faecal glucocorticoid metabolite (fGCM), faecal androgen metabolite (fAM) and plasma prolactin concentrations were quantified in breeding, high-, middle- and low-ranked females and males from five naked mole-rat colonies. There were no significant differences between the dominance rank and exploration behaviour. Interestingly, the queens and high-ranking females had higher fGCM and fAM concentrations compared with middle- and low-ranked females. The queens had significantly higher fPM concentrations than all other ranked females, since they are responsible for procreation. In the males, the BMs had higher fGCM concentrations compared with high- and low-ranked males. In addition, BMs and middle-ranking males had overall higher prolactin levels than all other ranked males, which could be linked to cooperative care. Overall, the results suggest that physiological reproductive suppression is linked to high dominance rank.


Subject(s)
Androgens , Feces , Mole Rats , Prolactin , Social Dominance , Animals , Male , Female , Prolactin/metabolism , Prolactin/blood , Feces/chemistry , Mole Rats/physiology , Androgens/metabolism , Androgens/blood , Glucocorticoids/metabolism , Exploratory Behavior , Progestins/metabolism
2.
Commun Biol ; 6(1): 1220, 2023 12 01.
Article in English | MEDLINE | ID: mdl-38040868

ABSTRACT

Covering approximately 40% of land surfaces, grasslands provide critical ecosystem services that rely on soil organisms. However, the global determinants of soil biodiversity and functioning remain underexplored. In this study, we investigate the drivers of soil microbial and detritivore activity in grasslands across a wide range of climatic conditions on five continents. We apply standardized treatments of nutrient addition and herbivore reduction, allowing us to disentangle the regional and local drivers of soil organism activity. We use structural equation modeling to assess the direct and indirect effects of local and regional drivers on soil biological activities. Microbial and detritivore activities are positively correlated across global grasslands. These correlations are shaped more by global climatic factors than by local treatments, with annual precipitation and soil water content explaining the majority of the variation. Nutrient addition tends to reduce microbial activity by enhancing plant growth, while herbivore reduction typically increases microbial and detritivore activity through increased soil moisture. Our findings emphasize soil moisture as a key driver of soil biological activity, highlighting the potential impacts of climate change, altered grazing pressure, and eutrophication on nutrient cycling and decomposition within grassland ecosystems.


Subject(s)
Ecosystem , Grassland , Soil/chemistry , Soil Microbiology , Biodiversity
3.
Animals (Basel) ; 13(19)2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37835644

ABSTRACT

The naked mole-rat (Heterocephalus glaber) occurs in colonies with a distinct dominance hierarchy, including one dominant, breeding female (the queen), 1-3 breeding males, and non-reproductive subordinates of both sexes that are reproductively suppressed while in the colony. To non-invasively evaluate reproductive capacity in the species, we first had to examine the suitability of enzyme immunoassays (EIAs) for determining progestogen and androgen metabolite concentrations in the naked mole-rat, using urine and faeces. A saline control and gonadotrophin-releasing hormone (GnRH) were administered to twelve (six males and six females) naked mole-rats which were previously identified as dispersers and housed singly. The results revealed that urine is possibly not an ideal matrix for progestogen and androgen metabolite quantification in naked mole-rats as no signal was detected in the matrix post GnRH administration. A 5α-Progesterone EIA and an Epiandrosterone EIA were identified as suitable for quantifying faecal progesterone metabolites (fPMs) and faecal androgen metabolites (fAMs) in males and females, respectively. The results suggest that there are individual variations in baseline fPM and fAM concentrations, and only two out of six females and no males exhibited an increase in fPM concentrations greater than 100% (-20% SD) post GnRH administration. Conversely, only four out of six females and three out of six males had an increase in fAM concentrations greater than 100% (-20% SD) following GnRH administration. These results imply that some naked mole-rat individuals have a reduced reproductive capacity even when they are separated from the queen.

4.
Nat Commun ; 14(1): 6624, 2023 10 19.
Article in English | MEDLINE | ID: mdl-37857640

ABSTRACT

Little is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients. The relationships between plant diversity and soil carbon as well as plant diversity and soil organic matter quality (carbon-to-nitrogen ratio) are particularly strong in warm and arid climates. While plant biomass is positively correlated with soil carbon, plant biomass is not significantly correlated with plant diversity. Our results indicate that plant diversity influences soil carbon storage not via the quantity of organic matter (plant biomass) inputs to soil, but through the quality of organic matter. The study implies that ecosystem management that restores plant diversity likely enhances soil carbon sequestration, particularly in warm and arid climates.


Subject(s)
Ecosystem , Soil , Carbon , Biodiversity , Biomass , Plants , Nitrogen
5.
Gen Comp Endocrinol ; 333: 114194, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36538992

ABSTRACT

In species where sociality and group cohesion are primarily determined by the maintenance of a reproductive division of labour and cooperative behaviours, the eusocial Damaraland mole-rat (Fukomys damarensis) presents a model which provides behavioural and endocrine distinctions between sex (males and females) and reproductive class (breeders and non-breeders). Although previous studies have demonstrated the endocrine aspects of reproductive suppression and behaviour in Damaraland mole-rats, they have focused on one hormone separately and on different conspecifics and samples across time. Unfortunately, this could introduce extrinsic biases when using these studies to compile complete hormonal profiles for comparisons. This study, therefore, set out to obtain a profile of the reproductive hormones from breeding and non-breeding male and female Damaraland mole-rats at a single point in time, from which circulating plasma prolactin and urinary progesterone, testosterone, and cortisol were measured. As expected, plasma prolactin and urinary cortisol did not differ between the breeders and non-breeders. However, breeders (both male and female) possessed increased urinary testosterone and progesterone concentrations compared to their non-breeding counterparts. These results, in conjunction with the variation in the expression of the respective hormonal receptors within the brains of breeders and non-breeders suggest that elevated testosterone and progesterone in breeders establish a neural dominance phenotype, which ultimately aids in controlling breeding activities. This study has emphasised the need for holistic, comprehensive profiling of reproductive endocrine systems.


Subject(s)
Hydrocortisone , Prolactin , Animals , Female , Male , Prolactin/metabolism , Hydrocortisone/metabolism , Mole Rats/metabolism , Progesterone/metabolism , Reproduction , Testosterone/metabolism
6.
Ecol Lett ; 25(12): 2699-2712, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36278303

ABSTRACT

Global change drivers, such as anthropogenic nutrient inputs, are increasing globally. Nutrient deposition simultaneously alters plant biodiversity, species composition and ecosystem processes like aboveground biomass production. These changes are underpinned by species extinction, colonisation and shifting relative abundance. Here, we use the Price equation to quantify and link the contributions of species that are lost, gained or that persist to change in aboveground biomass in 59 experimental grassland sites. Under ambient (control) conditions, compositional and biomass turnover was high, and losses (i.e. local extinctions) were balanced by gains (i.e. colonisation). Under fertilisation, the decline in species richness resulted from increased species loss and decreases in species gained. Biomass increase under fertilisation resulted mostly from species that persist and to a lesser extent from species gained. Drivers of ecological change can interact relatively independently with diversity, composition and ecosystem processes and functions such as aboveground biomass due to the individual contributions of species lost, gained or persisting.


Subject(s)
Ecosystem , Grassland , Biomass , Biodiversity , Plants
7.
Proc Natl Acad Sci U S A ; 118(28)2021 07 13.
Article in English | MEDLINE | ID: mdl-34260386

ABSTRACT

Anthropogenic nutrient enrichment is driving global biodiversity decline and modifying ecosystem functions. Theory suggests that plant functional types that fix atmospheric nitrogen have a competitive advantage in nitrogen-poor soils, but lose this advantage with increasing nitrogen supply. By contrast, the addition of phosphorus, potassium, and other nutrients may benefit such species in low-nutrient environments by enhancing their nitrogen-fixing capacity. We present a global-scale experiment confirming these predictions for nitrogen-fixing legumes (Fabaceae) across 45 grasslands on six continents. Nitrogen addition reduced legume cover, richness, and biomass, particularly in nitrogen-poor soils, while cover of non-nitrogen-fixing plants increased. The addition of phosphorous, potassium, and other nutrients enhanced legume abundance, but did not mitigate the negative effects of nitrogen addition. Increasing nitrogen supply thus has the potential to decrease the diversity and abundance of grassland legumes worldwide regardless of the availability of other nutrients, with consequences for biodiversity, food webs, ecosystem resilience, and genetic improvement of protein-rich agricultural plant species.


Subject(s)
Fabaceae/physiology , Grassland , Internationality , Nitrogen/pharmacology , Phosphorus/pharmacology , Biodiversity , Biomass , Fabaceae/drug effects , Probability
8.
Ecol Evol ; 11(24): 17744-17761, 2021 Dec.
Article in English | MEDLINE | ID: mdl-35003636

ABSTRACT

Biotic and abiotic factors interact with dominant plants-the locally most frequent or with the largest coverage-and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.

9.
Ecology ; 102(2): e03218, 2021 02.
Article in English | MEDLINE | ID: mdl-33058176

ABSTRACT

Human activities are enriching many of Earth's ecosystems with biologically limiting mineral nutrients such as nitrogen (N) and phosphorus (P). In grasslands, this enrichment generally reduces plant diversity and increases productivity. The widely demonstrated positive effect of diversity on productivity suggests a potential negative feedback, whereby nutrient-induced declines in diversity reduce the initial gains in productivity arising from nutrient enrichment. In addition, plant productivity and diversity can be inhibited by accumulations of dead biomass, which may be altered by nutrient enrichment. Over longer time frames, nutrient addition may increase soil fertility by increasing soil organic matter and nutrient pools. We examined the effects of 5-11 yr of nutrient addition at 47 grasslands in 12 countries. Nutrient enrichment increased aboveground live biomass and reduced plant diversity at nearly all sites, and these effects became stronger over time. We did not find evidence that nutrient-induced losses of diversity reduced the positive effects of nutrients on biomass; however, nutrient effects on live biomass increased more slowly at sites where litter was also increasing, regardless of plant diversity. This work suggests that short-term experiments may underestimate the long-term nutrient enrichment effects on global grassland ecosystems.


Subject(s)
Biodiversity , Ecosystem , Biomass , Grassland , Nitrogen/analysis , Nutrients , Soil
11.
Gen Comp Endocrinol ; 295: 113520, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32470474

ABSTRACT

The social environment of animals can have profound implications on their behaviour and physiology. Naked mole-rats (Heterocephalus glaber) are highly social with complex dominance hierarchies that influence both stress- and reproduction-related hormones. Homeostasis may be affected by aggressive interactions, colony instability and social isolation. Furthermore, naked mole-rat colonies are characterised by a marked reproductive skew; a single female and few males are reproductively active while other colony members are reproductively suppressed. Thus, there are distinct differences in related hormone concentrations between reproductively active and non-active animals; however, this changes when non-reproductive individuals are removed from the colony. We investigated the effects of social isolation and colony disruption on plasma cortisol and progesterone concentrations in non-breeding naked mole-rats. During colony disruption, we found a significant increase in cortisol concentrations in females removed from the colony for social isolation (experimental) as well as in females that remained in the colony (control). Cortisol concentrations were reduced in both groups after experimental animals were paired up. No changes in cortisol concentrations were observed in control or experimental males after removal from the colony or pairing. This suggests that the females, but not the males, found colony disruption and social isolation stressful. Upon removal from the colony, both control and experimental females showed a small increase in progesterone, which returned to basal levels again in the control animals. Experimental females showed a dramatic spike in progesterone when they were paired with males, indicating reproductive activation. The sex difference in the stress responses may be due to the stronger reproductive suppression imposed on females, or the increased likelihood of dispersal for males. It is clear that the social environment reflects on the endocrine correlates of animals living in a colony, and that the colony structure may affect the sensitivity of the animals to changes in their environment.


Subject(s)
Endocrine System/metabolism , Mole Rats/physiology , Social Isolation , Animals , Breeding , Female , Hydrocortisone/blood , Male , Mole Rats/blood , Progesterone/blood , Sex Characteristics
12.
Glob Chang Biol ; 26(4): 2060-2071, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32012421

ABSTRACT

Grasslands are subject to considerable alteration due to human activities globally, including widespread changes in populations and composition of large mammalian herbivores and elevated supply of nutrients. Grassland soils remain important reservoirs of carbon (C) and nitrogen (N). Herbivores may affect both C and N pools and these changes likely interact with increases in soil nutrient availability. Given the scale of grassland soil fluxes, such changes can have striking consequences for atmospheric C concentrations and the climate. Here, we use the Nutrient Network experiment to examine the responses of soil C and N pools to mammalian herbivore exclusion across 22 grasslands, under ambient and elevated nutrient availabilities (fertilized with NPK + micronutrients). We show that the impact of herbivore exclusion on soil C and N pools depends on fertilization. Under ambient nutrient conditions, we observed no effect of herbivore exclusion, but under elevated nutrient supply, pools are smaller upon herbivore exclusion. The highest mean soil C and N pools were found in grazed and fertilized plots. The decrease in soil C and N upon herbivore exclusion in combination with fertilization correlated with a decrease in aboveground plant biomass and microbial activity, indicating a reduced storage of organic matter and microbial residues as soil C and N. The response of soil C and N pools to herbivore exclusion was contingent on temperature - herbivores likely cause losses of C and N in colder sites and increases in warmer sites. Additionally, grasslands that contain mammalian herbivores have the potential to sequester more N under increased temperature variability and nutrient enrichment than ungrazed grasslands. Our study highlights the importance of conserving mammalian herbivore populations in grasslands worldwide. We need to incorporate local-scale herbivory, and its interaction with nutrient enrichment and climate, within global-scale models to better predict land-atmosphere interactions under future climate change.

13.
Nat Ecol Evol ; 3(3): 400-406, 2019 03.
Article in English | MEDLINE | ID: mdl-30718853

ABSTRACT

Leaf traits are frequently measured in ecology to provide a 'common currency' for predicting how anthropogenic pressures impact ecosystem function. Here, we test whether leaf traits consistently respond to experimental treatments across 27 globally distributed grassland sites across 4 continents. We find that specific leaf area (leaf area per unit mass)-a commonly measured morphological trait inferring shifts between plant growth strategies-did not respond to up to four years of soil nutrient additions. Leaf nitrogen, phosphorus and potassium concentrations increased in response to the addition of each respective soil nutrient. We found few significant changes in leaf traits when vertebrate herbivores were excluded in the short-term. Leaf nitrogen and potassium concentrations were positively correlated with species turnover, suggesting that interspecific trait variation was a significant predictor of leaf nitrogen and potassium, but not of leaf phosphorus concentration. Climatic conditions and pretreatment soil nutrient levels also accounted for significant amounts of variation in the leaf traits measured. Overall, we find that leaf morphological traits, such as specific leaf area, are not appropriate indicators of plant response to anthropogenic perturbations in grasslands.


Subject(s)
Grassland , Plant Leaves/physiology , Plant Physiological Phenomena , Magnoliopsida/anatomy & histology , Magnoliopsida/physiology , Nutrients/metabolism , Plant Leaves/anatomy & histology
14.
Ecol Lett ; 21(9): 1364-1371, 2018 09.
Article in English | MEDLINE | ID: mdl-29952114

ABSTRACT

Environmental change can result in substantial shifts in community composition. The associated immigration and extinction events are likely constrained by the spatial distribution of species. Still, studies on environmental change typically quantify biotic responses at single spatial (time series within a single plot) or temporal (spatial beta diversity at single time points) scales, ignoring their potential interdependence. Here, we use data from a global network of grassland experiments to determine how turnover responses to two major forms of environmental change - fertilisation and herbivore loss - are affected by species pool size and spatial compositional heterogeneity. Fertilisation led to higher rates of local extinction, whereas turnover in herbivore exclusion plots was driven by species replacement. Overall, sites with more spatially heterogeneous composition showed significantly higher rates of annual turnover, independent of species pool size and treatment. Taking into account spatial biodiversity aspects will therefore improve our understanding of consequences of global and anthropogenic change on community dynamics.


Subject(s)
Herbivory , Plants , Biodiversity
15.
Ecology ; 99(4): 822-831, 2018 04.
Article in English | MEDLINE | ID: mdl-29603733

ABSTRACT

Plant stoichiometry, the relative concentration of elements, is a key regulator of ecosystem functioning and is also being altered by human activities. In this paper we sought to understand the global drivers of plant stoichiometry and compare the relative contribution of climatic vs. anthropogenic effects. We addressed this goal by measuring plant elemental (C, N, P and K) responses to eutrophication and vertebrate herbivore exclusion at eighteen sites on six continents. Across sites, climate and atmospheric N deposition emerged as strong predictors of plot-level tissue nutrients, mediated by biomass and plant chemistry. Within sites, fertilization increased total plant nutrient pools, but results were contingent on soil fertility and the proportion of grass biomass relative to other functional types. Total plant nutrient pools diverged strongly in response to herbivore exclusion when fertilized; responses were largest in ungrazed plots at low rainfall, whereas herbivore grazing dampened the plant community nutrient responses to fertilization. Our study highlights (1) the importance of climate in determining plant nutrient concentrations mediated through effects on plant biomass, (2) that eutrophication affects grassland nutrient pools via both soil and atmospheric pathways and (3) that interactions among soils, herbivores and eutrophication drive plant nutrient responses at small scales, especially at water-limited sites.


Subject(s)
Grassland , Herbivory , Animals , Biomass , Ecosystem , Eutrophication , Humans , Nitrogen , Nutrients
16.
Nat Ecol Evol ; 2(1): 50-56, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29203922

ABSTRACT

Biodiversity is declining in many local communities while also becoming increasingly homogenized across space. Experiments show that local plant species loss reduces ecosystem functioning and services, but the role of spatial homogenization of community composition and the potential interaction between diversity at different scales in maintaining ecosystem functioning remains unclear, especially when many functions are considered (ecosystem multifunctionality). We present an analysis of eight ecosystem functions measured in 65 grasslands worldwide. We find that more diverse grasslands-those with both species-rich local communities (α-diversity) and large compositional differences among localities (ß-diversity)-had higher levels of multifunctionality. Moreover, α- and ß-diversity synergistically affected multifunctionality, with higher levels of diversity at one scale amplifying the contribution to ecological functions at the other scale. The identity of species influencing ecosystem functioning differed among functions and across local communities, explaining why more diverse grasslands maintained greater functionality when more functions and localities were considered. These results were robust to variation in environmental drivers. Our findings reveal that plant diversity, at both local and landscape scales, contributes to the maintenance of multiple ecosystem services provided by grasslands. Preserving ecosystem functioning therefore requires conservation of biodiversity both within and among ecological communities.


Subject(s)
Biodiversity , Grassland , Plants , Models, Biological , Spatial Analysis
17.
PLoS One ; 12(5): e0178440, 2017.
Article in English | MEDLINE | ID: mdl-28552986

ABSTRACT

The distribution of flowering across the growing season is governed by each species' evolutionary history and climatic variability. However, global change factors, such as eutrophication and invasion, can alter plant community composition and thus change the distribution of flowering across the growing season. We examined three ecoregions (tall-, mixed, and short-grass prairie) across the U.S. Central Plains to determine how nutrient (nitrogen (N), phosphorus, and potassium (+micronutrient)) addition alters the temporal patterns of plant flowering traits. We calculated total community flowering potential (FP) by distributing peak-season plant cover values across the growing season, allocating each species' cover to only those months in which it typically flowers. We also generated separate FP profiles for exotic and native species and functional group. We compared the ability of the added nutrients to shift the distribution of these FP profiles (total and sub-groups) across the growing season. In all ecoregions, N increased the relative cover of both exotic species and C3 graminoids that flower in May through August. The cover of C4 graminoids decreased with added N, but the response varied by ecoregion and month. However, these functional changes only aggregated to shift the entire community's FP profile in the tall-grass prairie, where the relative cover of plants expected to flower in May and June increased and those that flower in September and October decreased with added N. The relatively low native cover in May and June may leave this ecoregion vulnerable to disturbance-induced invasion by exotic species that occupy this temporal niche. There was no change in the FP profile of the mixed and short-grass prairies with N addition as increased abundance of exotic species and C3 graminoids replaced other species that flower at the same time. In these communities a disturbance other than nutrient addition may be required to disrupt phenological patterns.


Subject(s)
Ecosystem , Flowers , Nitrogen , Phosphorus , Plant Physiological Phenomena , Potassium , Midwestern United States
18.
Nature ; 537(7618): 93-96, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27556951

ABSTRACT

Niche dimensionality provides a general theoretical explanation for biodiversity-more niches, defined by more limiting factors, allow for more ways that species can coexist. Because plant species compete for the same set of limiting resources, theory predicts that addition of a limiting resource eliminates potential trade-offs, reducing the number of species that can coexist. Multiple nutrient limitation of plant production is common and therefore fertilization may reduce diversity by reducing the number or dimensionality of belowground limiting factors. At the same time, nutrient addition, by increasing biomass, should ultimately shift competition from belowground nutrients towards a one-dimensional competitive trade-off for light. Here we show that plant species diversity decreased when a greater number of limiting nutrients were added across 45 grassland sites from a multi-continent experimental network. The number of added nutrients predicted diversity loss, even after controlling for effects of plant biomass, and even where biomass production was not nutrient-limited. We found that elevated resource supply reduced niche dimensionality and diversity and increased both productivity and compositional turnover. Our results point to the importance of understanding dimensionality in ecological systems that are undergoing diversity loss in response to multiple global change factors.


Subject(s)
Biodiversity , Fertilizers , Grassland , Plants/classification , Plants/metabolism , Biomass , Food , Light , Plants/radiation effects , Poaceae/classification , Poaceae/drug effects , Poaceae/growth & development , Poaceae/radiation effects
19.
Article in English | MEDLINE | ID: mdl-27114575

ABSTRACT

Ecosystem eutrophication often increases domination by non-natives and causes displacement of native taxa. However, variation in environmental conditions may affect the outcome of interactions between native and non-native taxa in environments where nutrient supply is elevated. We examined the interactive effects of eutrophication, climate variability and climate average conditions on the success of native and non-native plant species using experimental nutrient manipulations replicated at 32 grassland sites on four continents. We hypothesized that effects of nutrient addition would be greatest where climate was stable and benign, owing to reduced niche partitioning. We found that the abundance of non-native species increased with nutrient addition independent of climate; however, nutrient addition increased non-native species richness and decreased native species richness, with these effects dampened in warmer or wetter sites. Eutrophication also altered the time scale in which grassland invasion responded to climate, decreasing the importance of long-term climate and increasing that of annual climate. Thus, climatic conditions mediate the responses of native and non-native flora to nutrient enrichment. Our results suggest that the negative effect of nutrient addition on native abundance is decoupled from its effect on richness, and reduces the time scale of the links between climate and compositional change.


Subject(s)
Biota/physiology , Climate , Eutrophication , Grassland , Introduced Species , Climate Change , Micronutrients/metabolism , Nitrogen/metabolism , Phosphorus/metabolism , Plant Physiological Phenomena , Potassium/metabolism
20.
Article in English | MEDLINE | ID: mdl-27114584

ABSTRACT

Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity-ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity-ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity-productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity-functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity.


Subject(s)
Biomass , Ecosystem , Animals , Biodiversity , Models, Biological , Plankton/physiology , Plant Physiological Phenomena , Population Dynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...