Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biomech ; 162: 111902, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38103314

ABSTRACT

The uncontrolled manifold (UCM) analysis has gained broad application in biomechanics and neuroscience for investigating the structure of motor variability in functional tasks. The UCM utilizes inter-trial analysis to partition the variance of elemental variables (e.g., finger forces, joint angles) that affect (VORT) and do not affect (VUCM) a performance variable (e.g., total force, end-effector position). However, to facilitate the translation of UCM into clinical settings, it is crucial to demonstrate the reliability of UCM estimates: VORT, VUCM, and their normalized difference, ΔV. This study aimed to determine the test-retest reliability using the intraclass correlation coefficient (ICC3,K), Bland-Altman plots, the standard error of measurement (SEM), and the minimal detectable change (MDC) of UCM estimate. Fifteen healthy individuals (24.8 ± 1.2 yrs old) performed a finger coordination task, with sessions separated by one hour, one day, and one week. Excellent reliability was found for VORT (ICC3,K = 0.97) and VUCM (ICC3,K = 0.92), whereas good reliability was observed for ΔV (ICC3,K = 0.84). Bland-Altman plots reveled no systematic differences. SEM% values were 24.57 %, 26.80 % and 12.49 % for VORT, VUCM and ΔV respectively, while the normalized MDC% values were 68.12 %, 74.30 % and 34.61 % for VORT, VUCM and ΔV respectively. Our results support the use of UCM as a reliable method for investigating the structure of movement variability. The excellent measurement properties make the UCM a promising tool for tracking changes in motor behavior over time (i.e., effects of interventions in prospective studies).


Subject(s)
Fingers , Movement , Humans , Reproducibility of Results , Prospective Studies , Biomechanical Phenomena
SELECTION OF CITATIONS
SEARCH DETAIL
...