Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Animals (Basel) ; 13(21)2023 Nov 03.
Article in English | MEDLINE | ID: mdl-37958173

ABSTRACT

This study aimed to evaluate the effect of the dietary inclusion of ensiled OC on milk yield, composition, fatty acid (FA) profile, and the expression of selected genes involved in lipid metabolism in the udder and adipose tissue of goats. Seventy-two Damascus dairy goats in mid-lactation were assigned randomly to three iso-nitrogenous and iso-energetic diets containing 0, 10, and 20% of ensiled OC as a replacement of forage (OC0, OC10, and OC20, respectively) for 42 days. During weeks 5 and 6 of the trial, dry matter intake, milk yield, milk composition, and FA profiles were recorded, while mammary and perirenal adipose tissue samples were also collected from six animals per treatment from the OC0 and OC20 groups for gene expression analysis. No significant differences were observed among groups concerning milk yield, 4% fat-corrected milk, fat, or protein yield (kg/d). In contrast, the milk fat percentage was gradually increased with increasing OC inclusion rates in the diets, while milk protein percentages were elevated in both OC groups but significantly only in the milk of the OC20 group. The content of FA between C4:0 to C16:0 was reduced, while mono-unsaturated FA (MUFA) concentration was enhanced in the goat milk of OC groups. The OC feeding treatment was associated with the increased mammary expression of SLC2A1 (p < 0.05), VLDLR (p < 0.01), FABP3 (p < 0.01), and elevated SLC2A1 (p < 0.05) and FASN (p < 0.01) gene expression in the adipose tissue of goats fed the OC20 diet. Overall, OC can be used in goats' diets as a forage replacement, at least in the inclusion rate of 20% DM, since this could increase the milk protein and fat percentage and enrich its content with beneficial for human health lipids without adversely affecting milk production traits.

2.
Vet World ; 14(6): 1472-1479, 2021 Jun.
Article in English | MEDLINE | ID: mdl-34316194

ABSTRACT

BACKGROUND AND AIM: Canine degenerative myelopathy (CDM) is an adult-onset fatal disorder associated with a point mutation of the superoxide dismutase 1 (SOD1) gene (SOD1:c.118G>A). This study aimed to determine the allele and genotype frequencies of this mutation in a group of Belgian Malinois dogs in Greece. MATERIALS AND METHODS: Samples (n=72) of whole blood were collected from 72 purebred dogs of the Hellenic Armed Forces; these samples were processed for DNA isolation, polymerase chain reaction, and digestion with the restriction endonuclease AcuI. Sample testing was conducted in compliance with ISO17025 accreditation requirements. RESULTS: The observed relative genotype frequencies were 71% for the homozygous (GG), 25% for the heterozygous (AG), and 4% for the homozygous mutant (AA) alleles. These frequencies were close to those expected, indicating no significant departure from Hardy-Weinberg equilibrium (HWE, p=0.395). The frequency of heterozygous animals indicates that a high risk of developing CDM in forthcoming generations exists in the tested population because mating among carriers would result in 25% AA progeny. The medical record of the group of study animals indicated selection against leishmaniosis, as applied throughout generations by owners and breeders. The potential association of this selection with the HWE status of the study population was discussed. CONCLUSION: The SOD1:c.118G>A mutation was common in the tested group of dogs; thus, they are suitable for a follow-up investigation on the development and progression of CDM. A case-control study on animals with evidence of sensitivity to infectious myelopathy could provide new insights into disease pathogenesis.

SELECTION OF CITATIONS
SEARCH DETAIL
...