Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 271
Filter
1.
J Mol Diagn ; 26(6): 498-509, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38522837

ABSTRACT

Fragile X syndrome (FXS) is the most common heritable form of intellectual disability and is caused by CGG repeat expansions exceeding 200 (full mutation). Such expansions lead to hypermethylation and transcriptional silencing of the fragile X messenger ribonucleoprotein 1 (FMR1) gene. As a consequence, little or no FMR1 protein (FMRP) is produced; absence of the protein, which normally is responsible for neuronal development and maintenance, causes the syndrome. Previous studies have demonstrated the causal relationship between FMRP levels and cognitive abilities in peripheral blood mononuclear cells (PBMCs) and dermal fibroblast cell lines of patients with FXS. However, it is arguable whether PBMCs or fibroblasts would be the preferred surrogate for measuring molecular markers, particularly FMRP, to represent the cognitive impairment, a core symptom of FXS. To address this concern, CGG repeats, methylation status, FMR1 mRNA, and FMRP levels were measured in both PBMCs and fibroblasts derived from 66 individuals. The findings indicated a strong association between FMR1 mRNA expression levels and CGG repeat numbers in PBMCs of premutation males after correcting for methylation status. Moreover, FMRP expression levels from both PBMCs and fibroblasts of male participants with a hypermethylated full mutation and with mosaicism demonstrated significant association between the intelligence quotient levels and FMRP levels, suggesting that PBMCs may be preferable for FXS clinical studies, because of their greater accessibility.


Subject(s)
DNA Methylation , Fibroblasts , Fragile X Mental Retardation Protein , Fragile X Syndrome , Leukocytes, Mononuclear , Mutation , Humans , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Fibroblasts/metabolism , Leukocytes, Mononuclear/metabolism , Male , Fragile X Syndrome/genetics , Fragile X Syndrome/blood , Fragile X Syndrome/diagnosis , Female , Adult , RNA, Messenger/genetics , Adolescent , Trinucleotide Repeat Expansion/genetics , Young Adult , Intelligence/genetics , Middle Aged , Child
2.
Genes (Basel) ; 15(3)2024 Mar 03.
Article in English | MEDLINE | ID: mdl-38540390

ABSTRACT

Fragile X syndrome (FXS) is the leading inherited cause of intellectual disability (ID) and single gene cause of autism. Although most patients with FXS and the full mutation (FM) have complete methylation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene, some have mosaicism in methylation and/or CGG repeat size, and few have completely unmethylated FM alleles. Those with a complete lack of methylation are rare, with little literature about the cognitive and behavioral phenotypes of these individuals. A review of past literature was conducted regarding individuals with unmethylated and mosaic FMR1 FM. We report three patients with an unmethylated FM FMR1 alleles without any behavioral or cognitive deficits. This is an unusual presentation for men with FM as most patients with an unmethylated FM and no behavioral phenotypes do not receive fragile X DNA testing or a diagnosis of FXS. Our cases showed that mosaic males with unmethylated FMR1 FM alleles may lack behavioral phenotypes due to the presence of smaller alleles producing the FMR1 protein (FMRP). However, these individuals could be at a higher risk of developing fragile X-associated tremor/ataxia syndrome (FXTAS) due to the increased expression of mRNA, similar to those who only have a premutation.


Subject(s)
Ataxia , Fragile X Syndrome , Tremor , Male , Humans , Fragile X Syndrome/genetics , Fragile X Syndrome/complications , DNA Methylation/genetics , Fragile X Mental Retardation Protein/genetics , Mutation
3.
Genes (Basel) ; 15(3)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38540415

ABSTRACT

Fragile X syndrome (FXS) is the most common heritable cause of intellectual disability and autism spectrum disorder. The syndrome is often caused by greatly reduced or absent protein expression from the fragile X messenger ribonucleoprotein 1 (FMR1) gene due to expansion of a 5'-non-coding trinucleotide (CGG) element beyond 200 repeats (full mutation). To better understand the complex relationships among FMR1 allelotype, methylation status, mRNA expression, and FMR1 protein (FMRP) levels, FMRP was quantified in peripheral blood mononuclear cells for a large cohort of FXS (n = 154) and control (n = 139) individuals using time-resolved fluorescence resonance energy transfer. Considerable size and methylation mosaicism were observed among individuals with FXS, with FMRP detected only in the presence of such mosaicism. No sample with a minimum allele size greater than 273 CGG repeats had significant levels of FMRP. Additionally, an association was observed between FMR1 mRNA and FMRP levels in FXS samples, predominantly driven by those with the lowest FMRP values. This study underscores the complexity of FMR1 allelotypes and FMRP expression and prompts a reevaluation of FXS therapies aimed at reactivating large full mutation alleles that are likely not capable of producing sufficient FMRP to improve cognitive function.


Subject(s)
Autism Spectrum Disorder , Fragile X Syndrome , Humans , Fragile X Syndrome/genetics , Trinucleotide Repeat Expansion/genetics , Leukocytes, Mononuclear/metabolism , Autism Spectrum Disorder/genetics , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
4.
J Clin Med ; 13(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38256638

ABSTRACT

BACKGROUND: Vestibular migraine (VM) is one of the most common causes of recurrent vertigo and presents with a history of spontaneous or positional vertigo with a history of migraine headaches. While research has identified a high prevalence of migraine headaches and vestibular deficits among fragile X premutation carriers, there has been no discussion about VM within this population. OBJECTIVE: This case series and review seeks to describe the clinical characteristics and pathophysiology of VM among individuals with the fragile X premutation. We also seek to discuss treatment and future steps in addressing VM in this population. METHODS: A review of the literature regarding vestibular migraine and presentation of migraine headaches and vestibular deficits among premutation carriers was performed. A detailed clinical history of migraine headaches and vertigo was obtained from three patients with the fragile X premutation seen by the senior author (RJH). RESULTS: All three cases first developed symptoms of migraine headaches earlier in life, with the development of VM near menopause. Two of the three cases developed progressive balance issues following the development of VM. All three cases found that their VM episodes were improved or resolved with pharmacological and/or lifestyle interventions. CONCLUSIONS: It is important to recognize VM among premutation carriers because beneficial treatments are available. Future studies are needed regarding the prevalence of VM and the relationship to subsequent FXTAS. The pathophysiology of VM remains uncertain but possibilities include mitochondrial abnormalities, cranial nerve VIII toxicity secondary to neurotoxic protein accumulation, and calcitonin gene-related peptide (CGRP) signaling dysfunction due to altered levels of fragile X messenger ribonucleoprotein (FMRP).

5.
Ann Neurol ; 95(3): 558-575, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38069470

ABSTRACT

OBJECTIVE: Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset progressive genetic neurodegenerative disorder that occurs in FMR1 premutation carriers. The temporal, spatial, and cell-type specific patterns of neurodegeneration in the FXTAS brain remain incompletely characterized. Intranuclear inclusion bodies are the neuropathological hallmark of FXTAS, which are largest and occur most frequently in astrocytes, glial cells that maintain brain homeostasis. Here, we characterized neuropathological alterations in astrocytes in multiple regions of the FXTAS brain. METHODS: Striatal and cerebellar sections from FXTAS cases (n = 12) and controls (n = 12) were stained for the astrocyte markers glial fibrillary acidic protein (GFAP) and aldehyde dehydrogenase 1L1 (ALDH1L1) using immunohistochemistry. Reactive astrogliosis severity, the prevalence of GFAP+ fragments, and astrocyte density were scored. Double label immunofluorescence was utilized to detect co-localization of GFAP and cleaved caspase-3. RESULTS: FXTAS cases showed widespread reactive gliosis in both grey and white matter. GFAP staining also revealed remarkably severe astrocyte pathology in FXTAS white matter - characterized by a significant and visible reduction in astrocyte density (-38.7% in striatum and - 32.2% in cerebellum) and the widespread presence of GFAP+ fragments reminiscent of apoptotic bodies. White matter specific reductions in astrocyte density were confirmed with ALDH1L1 staining. GFAP+ astrocytes and fragments in white matter were positive for cleaved caspase-3, suggesting that apoptosis-mediated degeneration is responsible for reduced astrocyte counts. INTERPRETATION: We have established that FXTAS neuropathology includes robust degeneration of astrocytes, which is specific to white matter. Because astrocytes are essential for maintaining homeostasis within the central nervous system, a loss of astrocytes likely further exacerbates neuropathological progression of other cell types in the FXTAS brain. ANN NEUROL 2024;95:558-575.


Subject(s)
Fragile X Syndrome , White Matter , Humans , Astrocytes/metabolism , Tremor/genetics , Gliosis/pathology , Caspase 3/metabolism , White Matter/pathology , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , Fragile X Syndrome/metabolism , Ataxia/genetics , Fragile X Mental Retardation Protein/genetics
6.
Int J Mol Sci ; 24(24)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38139097

ABSTRACT

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a neurodegenerative disorder that affects older premutation carriers (55-200 CGG repeats) of the fragile X gene. Despite the high prevalence of the FXTAS disorder, neuropathology studies of individuals affected by FXTAS are limited. We performed hematoxylin and eosin (H&E) staining in the hippocampus of 26 FXTAS cases and analyzed the tissue microscopically. The major neuropathological characteristics were white matter disease, intranuclear inclusions in neurons and astrocytes, and neuron loss. Astrocytes contained more and larger inclusions than neurons. There was a negative correlation between age of death and CGG repeat length in cases over the age of 60. The number of astroglial inclusions (CA3 and dentate gyrus) and the number of CA3 neuronal inclusions increased with elevated CGG repeat length. In the two cases with a CGG repeat size less than 65, FXTAS intranuclear inclusions were not present in the hippocampus, while in the two cases with less than 70 (65-70) CGG repeat expansion, neurons and astrocytes with inclusions were occasionally identified in the CA1 sub-region. These findings add hippocampus neuropathology to the previously reported changes in other areas of the brain in FXTAS patients, with implications for understanding FXTAS pathogenesis.


Subject(s)
Fragile X Syndrome , Tremor , Humans , Tremor/genetics , Gray Matter/metabolism , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/genetics , Fragile X Syndrome/pathology , Ataxia/genetics , Hippocampus/metabolism , Trinucleotide Repeat Expansion
7.
Front Pediatr ; 11: 1296110, 2023.
Article in English | MEDLINE | ID: mdl-37920795

ABSTRACT

[This corrects the article DOI: 10.3389/fped.2023.1064104.].

8.
Colomb Med (Cali) ; 54(2): e4005089, 2023.
Article in English | MEDLINE | ID: mdl-37664646

ABSTRACT

Fragile X syndrome is caused by the expansion of CGG triplets in the FMR1 gene, which generates epigenetic changes that silence its expression. The absence of the protein coded by this gene, FMRP, causes cellular dysfunction, leading to impaired brain development and functional abnormalities. The physical and neurologic manifestations of the disease appear early in life and may suggest the diagnosis. However, it must be confirmed by molecular tests. It affects multiple areas of daily living and greatly burdens the affected individuals and their families. Fragile X syndrome is the most common monogenic cause of intellectual disability and autism spectrum disorder; the diagnosis should be suspected in every patient with neurodevelopmental delay. Early interventions could improve the functional prognosis of patients with Fragile X syndrome, significantly impacting their quality of life and daily functioning. Therefore, healthcare for children with Fragile X syndrome should include a multidisciplinary approach.


El síndrome de X frágil es causado por la expansión de tripletas CGG en el gen FMR1, el cual genera cambios epigenéticos que silencian su expresión. La ausencia de la proteína codificada por este gen, la FMRP, causa disfunción celular, llevando a deficiencia en el desarrollo cerebral y anormalidades funcionales. Las manifestaciones físicas y neurológicas de la enfermedad aparecen en edades tempranas y pueden sugerir el diagnóstico. Sin embargo, este debe ser confirmado por pruebas moleculares. El síndrome afecta múltiples aspectos de la vida diaria y representa una alta carga para los individuos afectados y para sus familias. El síndrome de C frágil es la causa monogénica más común de discapacidad intelectual y trastornos del espectro autista; por ende, el diagnóstico debe sospecharse en todo paciente con retraso del neurodesarrollo. Intervenciones tempranas podrían mejorar el pronóstico funcional de pacientes con síndrome de X frágil, impactando significativamente su calidad de vida y funcionamiento. Por lo tanto, la atención en salud de niños con síndrome de X frágil debe incluir un abordaje multidisciplinario.


Subject(s)
Autism Spectrum Disorder , Fragile X Syndrome , Intellectual Disability , Humans , Child , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , Autism Spectrum Disorder/etiology , Autism Spectrum Disorder/genetics , Quality of Life , Fragile X Mental Retardation Protein/genetics
9.
Cells ; 12(18)2023 09 21.
Article in English | MEDLINE | ID: mdl-37759552

ABSTRACT

The premutation of the fragile X messenger ribonucleoprotein 1 (FMR1) gene is characterized by an expansion of the CGG trinucleotide repeats (55 to 200 CGGs) in the 5' untranslated region and increased levels of FMR1 mRNA. Molecular mechanisms leading to fragile X-premutation-associated conditions (FXPAC) include cotranscriptional R-loop formations, FMR1 mRNA toxicity through both RNA gelation into nuclear foci and sequestration of various CGG-repeat-binding proteins, and the repeat-associated non-AUG (RAN)-initiated translation of potentially toxic proteins. Such molecular mechanisms contribute to subsequent consequences, including mitochondrial dysfunction and neuronal death. Clinically, premutation carriers may exhibit a wide range of symptoms and phenotypes. Any of the problems associated with the premutation can appropriately be called FXPAC. Fragile X-associated tremor/ataxia syndrome (FXTAS), fragile X-associated primary ovarian insufficiency (FXPOI), and fragile X-associated neuropsychiatric disorders (FXAND) can fall under FXPAC. Understanding the molecular and clinical aspects of the premutation of the FMR1 gene is crucial for the accurate diagnosis, genetic counseling, and appropriate management of affected individuals and families. This paper summarizes all the known problems associated with the premutation and documents the presentations and discussions that occurred at the International Premutation Conference, which took place in New Zealand in 2023.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Humans , Fragile X Mental Retardation Protein/genetics , Fragile X Mental Retardation Protein/metabolism , Mutation/genetics , RNA, Messenger/metabolism , Trinucleotide Repeat Expansion/genetics , Fragile X Syndrome/diagnosis , Fragile X Syndrome/genetics , Fragile X Syndrome/therapy
10.
Cells ; 12(17)2023 08 23.
Article in English | MEDLINE | ID: mdl-37681866

ABSTRACT

The course of pathophysiological mechanisms involved in fragile X-associated tremor/ataxia syndrome (FXTAS) remains largely unknown. Previous proteomics and metabolomics studies conducted in blood samples collected from FMR1 premutation carriers with FXTAS reported abnormalities in energy metabolism, and precursors of gluconeogenesis showed significant changes in plasma expression levels in FMR1 premutation carriers who developed FXTAS. We conducted an analysis of postmortem human brain tissues from 44 donors, 25 brains with FXTAS, and 19 matched controls. We quantified the metabolite relative abundance in the inferior temporal gyrus and the cerebellum using untargeted mass spectrometry (MS)-based metabolomics. We investigated how the metabolite type and abundance relate to the number of cytosine-guanine-guanine (CGG) repeats, to markers of neurodegeneration, and to the symptoms of FXTAS. A metabolomic analysis identified 191 primary metabolites, the data were log-transformed and normalized prior to the analysis, and the relative abundance was compared between the groups. The changes in the relative abundance of a set of metabolites were region-specific with some overlapping results; 22 metabolites showed alterations in the inferior temporal gyrus, while 21 showed differences in the cerebellum. The relative abundance of cytidine was decreased in the inferior temporal gyrus, and a lower abundance was found in the cases with larger CGG expansions; oleamide was significantly decreased in the cerebellum. The abundance of 11 metabolites was influenced by changes in the CGG repeat number. A histological evaluation found an association between the presence of microhemorrhages in the inferior temporal gyrus and a lower abundance of 2,5-dihydroxypyrazine. Our study identified alterations in the metabolites involved in the oxidative-stress response and bioenergetics in the brains of individuals with FXTAS. Significant changes in the abundance of cytidine and oleamide suggest their potential as biomarkers and therapeutic targets for FXTAS.


Subject(s)
Brain , Tremor , Humans , Cytidine , Cytosine , Guanine , Metabolomics , Ataxia/genetics , Fragile X Mental Retardation Protein/genetics
11.
Cells ; 12(14)2023 07 20.
Article in English | MEDLINE | ID: mdl-37508562

ABSTRACT

Brain changes at the end-stage of fragile X-associated tremor/ataxia syndrome (FXTAS) are largely unknown due to mobility impairment. We conducted a postmortem MRI study of FXTAS to quantify cerebrovascular disease, brain atrophy and iron content, and examined their relationships using principal component analysis (PCA). Intracranial hemorrhage (ICH) was observed in 4/17 FXTAS cases, among which one was confirmed by histologic staining. Compared with seven control brains, FXTAS cases showed higher ratings of T2-hyperintensities (indicating cerebral small vessel disease) in the cerebellum, globus pallidus and frontoparietal white matter, and significant atrophy in the cerebellar white matter, red nucleus and dentate nucleus. PCA of FXTAS cases revealed negative associations of T2-hyperintensity ratings with anatomic volumes and iron content in the white matter, hippocampus and amygdala, that were independent from a highly correlated number of regions with ICH and iron content in subcortical nuclei. Post-hoc analysis confirmed PCA findings and further revealed increased iron content in the white matter, hippocampus and amygdala in FXTAS cases compared to controls, after adjusting for T2-hyperintensity ratings. These findings indicate that both ischemic and hemorrhagic brain damage may occur in FXTAS, with the former being marked by demyelination/iron depletion and atrophy, and the latter by ICH and iron accumulation in basal ganglia.


Subject(s)
Cerebrovascular Disorders , Fragile X Syndrome , Humans , Tremor/diagnostic imaging , Tremor/pathology , Iron , Ataxia/diagnostic imaging , Ataxia/pathology , Fragile X Syndrome/diagnostic imaging , Fragile X Syndrome/pathology , Magnetic Resonance Imaging , Atrophy
12.
Colomb. med ; 54(2)jun. 2023.
Article in English | LILACS-Express | LILACS | ID: biblio-1534285

ABSTRACT

Fragile X syndrome is caused by the expansion of CGG triplets in the FMR1 gene, which generates epigenetic changes that silence its expression. The absence of the protein coded by this gene, FMRP, causes cellular dysfunction, leading to impaired brain development and functional abnormalities. The physical and neurologic manifestations of the disease appear early in life and may suggest the diagnosis. However, it must be confirmed by molecular tests. It affects multiple areas of daily living and greatly burdens the affected individuals and their families. Fragile X syndrome is the most common monogenic cause of intellectual disability and autism spectrum disorder; the diagnosis should be suspected in every patient with neurodevelopmental delay. Early interventions could improve the functional prognosis of patients with Fragile X syndrome, significantly impacting their quality of life and daily functioning. Therefore, healthcare for children with Fragile X syndrome should include a multidisciplinary approach.


El síndrome de X frágil es causado por la expansión de tripletas CGG en el gen FMR1, el cual genera cambios epigenéticos que silencian su expresión. La ausencia de la proteína codificada por este gen, la FMRP, causa disfunción celular, llevando a deficiencia en el desarrollo cerebral y anormalidades funcionales. Las manifestaciones físicas y neurológicas de la enfermedad aparecen en edades tempranas y pueden sugerir el diagnóstico. Sin embargo, este debe ser confirmado por pruebas moleculares. El síndrome afecta múltiples aspectos de la vida diaria y representa una alta carga para los individuos afectados y para sus familias. El síndrome de C frágil es la causa monogénica más común de discapacidad intelectual y trastornos del espectro autista; por ende, el diagnóstico debe sospecharse en todo paciente con retraso del neurodesarrollo. Intervenciones tempranas podrían mejorar el pronóstico funcional de pacientes con síndrome de X frágil, impactando significativamente su calidad de vida y funcionamiento. Por lo tanto, la atención en salud de niños con síndrome de X frágil debe incluir un abordaje multidisciplinario.

13.
Front Pediatr ; 11: 1064104, 2023.
Article in English | MEDLINE | ID: mdl-36861076

ABSTRACT

Introduction: Fragile X syndrome (FXS) is a X-linked neurodevelopmental disorder (NDD). This study aims to investigate the incidence of FXS in Chinese children and analyze the comprehensive clinical characteristics of these FXS children. Methods: Children diagnosed with idiopathic NDD were recruited between 2016 and 2021 from the department of Child Health Care, Children's Hospital of Fudan University. We combined tetraplet-primed PCR-capillary electrophoresis and whole exome sequencing (WES)/panel or array-based comparative genomic hybridization (array-CGH) to identify the size of the CGG repeats and the mutations or copy number variations (CNVs) in the genome and in FMR1. The clinical features of FXS children were analyzed according to pediatricians' recording, parental questionnaires, the results of examinations and follow-up. Results: The incidence of FXS in Chinese children with idiopathic NDD was 2.4% (42/1753) and in those with FXS, 2.38% had a deletion (1/42). Here, we present the clinical characteristics of 36 children with FXS. Overweight was observed in two boys. The average intelligence quotient (IQ)/development quotient (DQ) of all FXS patients was 48. The average ages of meaningful words and walking alone were 2 years and 10 months and 1 year and 7 months, respectively. The most frequent repetitive behavior was stimulated by hyperarousal to sensory stimulation. On social aspects, social withdrawal, social anxiety, and shyness accounted for 75%, 58%, and 56% of the total number of children, respectively. Approximately 60% of FXS children in this cohort were emotionally labile and prone to temper tantrums. Self-injury and aggression toward others could also be observed, at 19% and 28%, respectively. The most frequent behavioral problem was attention-deficit hyperactivity disorder (ADHD) seen in 64% and the most common facial features were a narrow and elongated face and large or prominent ears in 92% of patients. Discussion: Screening of FMR1 full mutation provides the possibility for patients' further medical supports and the clinical features of FXS children obtained in this study will increase the understanding and diagnosis of FXS.

14.
Res Sq ; 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36711694

ABSTRACT

Brain changes at end-stage of fragile X-associated tremor/ataxia syndrome (FXTAS) are largely unknown due to mobility impairment. We conducted a postmortem MRI study of FXTAS to quantify cerebrovascular disease, brain atrophy, and iron content and examined their relationships using principal component analysis (PCA). Intracranial hemorrhage (ICH) was observed in 4/17 FXTAS cases among which one was confirmed by histologic staining. Compared with seven control brains, FXTAS cases showed higher ratings of T2-hyperintensities (indicating cerebral small vessel disease) in the cerebellum, globus pallidus, and frontoparietal white matter and significant atrophy in cerebellar white matter, red nucleus, and dentate nucleus. PCA of FXTAS cases revealed negative associations of T2-hyperintensity ratings with anatomic volumes and iron content in the white matter, hippocampus, and amygdala, that were independent from highly correlated number of regions with ICH and iron content in subcortical nuclei. Post hoc analysis confirmed PCA findings and further revealed increased iron content in the white matter, hippocampus, and amygdala in FXTAS cases than controls after adjusting for T2-hyperintensity ratings. These findings indicate that both ischemic and hemorrhagic brain damage may occur in FXTAS, with the former marked by demyelination/iron depletion and atrophy and the latter, ICH and iron accumulation in basal ganglia.

15.
J Autism Dev Disord ; 53(11): 4465-4473, 2023 Nov.
Article in English | MEDLINE | ID: mdl-35972625

ABSTRACT

Individuals with autism spectrum disorder present with difficulties in social communication, restricted interests or behaviors and other co-morbidities. About 2 to 10% of cases of autism have a genetic cause, and Fragile X Syndrome (FXS) is reported in 0 to 6.5% of individuals with autism. However, the FXS and premutation prevalence among Filipino children has never been reported. The aim of the study was to establish the presence of FXS or premutation carriers among Filipino children with autism and to describe the phenotypic characteristic of cases identified. Blood was collected from 235 children aged 2-6 years old and diagnosed with autism. Samples were analyzed using PCR methods to amplify CGG repeats in the FMRI gene. The diagnosis of autism was confirmed through the Autism Diagnostic Observation Schedule-2. Additional characteristics were documented from a physical examination, Griffiths Scales of Child Development assessment and a parent-answered questionnaire using the Vineland Adaptive Behavior Scale. Fragile X testing through PCR methods in 235 children with diagnosed autism showed 220 (93.6%) were negative, no full mutations, 1 (0.436%) premutation carrier and 14 (5.95%) cases contained intermediate alleles. The FXS testing was limited to confirmed cases of autism, which is considered a high-risk group and does not provide prevalence for the general Filipino population. Subjects were self-referred or referred by clinicians, which may not represent the Filipino autism population with a bias towards those with means for clinical consultations and ability to travel to the place of testing. Samples were not measured for mosaicism, DNA methylation or AGG interspersion patterns. These may have effects on the CGG repeat expansion and overall presentation of FXS. Findings from a single premutation carrier cannot characterize features distinctly present in Filipinos with the mutation. Nevertheless, these results support the data that the prevalence of FXS in Asian populations may be lower than non-Asian populations. This can contribute to a better understanding of FXS and genetic causes of autism in the Philippines and other Asian populations.


Subject(s)
Autism Spectrum Disorder , Autistic Disorder , Fragile X Syndrome , Child , Humans , Child, Preschool , Fragile X Syndrome/diagnosis , Fragile X Syndrome/epidemiology , Fragile X Syndrome/genetics , Autism Spectrum Disorder/diagnosis , Autism Spectrum Disorder/epidemiology , Autism Spectrum Disorder/genetics , Autistic Disorder/genetics , Mutation , Child Development , Fragile X Mental Retardation Protein/genetics
16.
Intractable Rare Dis Res ; 11(4): 215-218, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36457587

ABSTRACT

Fragile X syndrome (FXS) is caused by the full mutation in the fragile x messenger ribonucleoprotein 1 (FMR1) gene leading to the absence of the fragile X protein (FXP). Previous studies show that individuals with FXS exhibit changing behavior over time; therefore, this study aimed to elucidate the aberrant behavior profile of FXS individuals. The Aberrant Behavior Checklist-Community (ABC-C) was used to measure the aberrant behavior profile of individuals with FXS, which was rated by the parent/caregiver combined with clinical impression. A total of 58 items were used to assess aberrant behaviors across five subscales. Forty-nine individuals with FXS were included (32 males, 17 females) with a mean age of 32.9 ± 14.62 years in males and 33.4 ± 13.98 years in females. The average score of irritability and hyperactivity was significantly higher in male FXS individuals (5.37 ± 6.231 and 10.28 ± 8.524) than in female individuals (3.24 ± 7.093 and 3.76 ± 3.327) with p = 0.046 and p = 0.001, respectively. Overall irritability in FXS individuals significantly decreased over time (ß = -0.141; p = 0.032). A modest worsening in lethargy/social withdrawal in males across age and a gentle improvement in hyperactivity/noncompliance in male of FXS individuals were observed. FXS males had higher hyperactivity problems than FXS female individuals across age.

17.
Sci Rep ; 12(1): 21382, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-36496525

ABSTRACT

No proven prognosis is available for the neurodegenerative disorder fragile X-associated tremor/ataxia syndrome (FXTAS). Artificial neural network analyses (ANN) were used to predict FXTAS progression using data from 127 adults (noncarriers and FMR1 premutation carriers with and without FXTAS) with five outcomes from brain MRI imaging and 22 peripheral bioenergetic outcomes from two cell types. Diagnosis accuracy by ANN predictions ranged from 41.7 to 86.3% (depending on the algorithm used), and those misclassified usually presented a higher FXTAS stage. ANN prediction of FXTAS stages was based on a combination of two imaging findings (white matter hyperintensity and whole-brain volumes adjusted for intracranial volume) and four bioenergetic outcomes. Those at Stage 3 vs. 0-2 showed lower mitochondrial mass, higher oxidative stress, and an altered electron transfer consistent with mitochondrial unfolded protein response activation. Those at Stages 4-5 vs. 3 had higher oxidative stress and glycerol-3-phosphate-linked ATP production, suggesting that targeting mGPDH activity may prevent a worse prognosis. This was confirmed by the bioenergetic improvement of inhibiting mGPDH with metformin in affected fibroblasts. ANN supports the prospect of an unbiased molecular definition in diagnosing FXTAS stages while identifying potential targets for personalized medicine.


Subject(s)
Fragile X Mental Retardation Protein , Fragile X Syndrome , Adult , Humans , Fragile X Mental Retardation Protein/genetics , Fragile X Syndrome/diagnostic imaging , Fragile X Syndrome/genetics , Ataxia/diagnosis , Brain/diagnostic imaging , Brain/metabolism , Magnetic Resonance Imaging , Neural Networks, Computer , Neuroimaging
18.
Clin Case Rep ; 10(11): e6586, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36447664

ABSTRACT

Premutation alleles with 55-200 CGG repeats in FMR1 can lead to fragile X-associated tremor/ataxia syndrome (FXTAS). In this case study, we report uncontrolled gout in a 68-year-old male with FXTAS with multiple sites of involvement including a rare gouty tophus in the nasal region.

19.
Front Neurol ; 13: 977380, 2022.
Article in English | MEDLINE | ID: mdl-36188408

ABSTRACT

Background: The original Fragile X-associated Tremor Ataxia Syndrome Rating Scale (FXTAS-RS) contained 61 items, some requiring modifications to better meet recommendations for patient-focused rating scale development. Purpose: Provide initial validation of a revised version of the FXTAS-RS for motor signs. Method: We conducted a two-phase mixed-method approach. In Phase 1, revision, we implemented a Delphi technique identifying pertinent domains/subdomains and developing items through expert consensus. In Phase 2, content validation, we conducted cognitive pretesting assessing comprehensibility, comprehensiveness, and relevance of items to FXTAS motor signs. Results: After five rounds of Delphi panel and two rounds of cognitive pretesting, the revised version of the FXTAS-RS was established with 18 items covering five domains and 13 subdomains of motor signs. Cognitive pretesting revealed adequate content validity for the assessment of FXTAS motor signs. Conclusion: The revised FXTAS-RS has been successfully validated for content and it is now ready for large-scale field validation.

20.
Genes (Basel) ; 13(9)2022 08 30.
Article in English | MEDLINE | ID: mdl-36140728

ABSTRACT

Fragile X syndrome (FXS) is an inherited genetic condition that is the leading known cause of inherited intellectual developmental disability. Phenotypically, individuals with FXS also present with distinct physical features including, elongated face, prominent ears, pectus excavatum, macroorchidism, and joint laxity, which suggests connective tissue dysplasia. In addition to mitral valve prolapse, aortic dilatation has been identified within individuals with FXS. Abnormal elastin fiber networks have been found in the skin, valves, and aorta in individual cases. Aortic dilatation has been described in other connective tissue disorders, particularly Marfan syndrome. However, while aortic aneurysms are characteristic of Marfan syndrome, no similar cases have been reported in FXS patients to date. This case report details the presentation of two patients with FXS and aortic aneurysm. Our two cases highlight the risks of aortic pathology in FXS, and the need for monitoring in asymptomatic patients with significant aortic dilatation.


Subject(s)
Aortic Aneurysm , Connective Tissue Diseases , Fragile X Syndrome , Marfan Syndrome , Mitral Valve Prolapse , Aortic Aneurysm/diagnostic imaging , Aortic Aneurysm/genetics , Connective Tissue Diseases/genetics , Elastin , Fragile X Syndrome/complications , Fragile X Syndrome/genetics , Humans , Marfan Syndrome/complications , Marfan Syndrome/genetics , Mitral Valve Prolapse/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...