Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Aerosol Med Pulm Drug Deliv ; 35(6): 307-312, 2022 12.
Article in English | MEDLINE | ID: mdl-36516401

ABSTRACT

Background: Intravenous liposomal amphotericin B (L-AMB) has accompanying side effects that may be diminished when administering an inhaled form. Delivery systems for inhaled or aerosolized L-AMB vary, and there has not been a recent comparison of available systems to date. Methods: We compared three differently designed nebulizer delivery systems for the inhaled delivery of L-AMB to determine the best combination of efficient lung dosing and treatment time. Aerosol size was measured using a Malvern Mastersizer, and five separate nebulizers were tested. For drug output measurements, a Harvard Lung was used, and aerosol was collected using HEPA filters. Results: Overall aerosol size characteristics were similar for all devices with volume median diameters in the 4-5 µm range. The highest inhaled dose was delivered by the AeroEclipse. The Aerogen and the AeroEclipse had similar predicted pulmonary doses, and the AeroEclipse had the highest pulmonary delivery rates. Conclusion: The AeroEclipse nebulizer may provide more efficient delivery in a shorter amount of time; however, human studies are warranted to assess the safety, tolerability, and efficacy of inhaled delivery of L-AMB from this system.


Subject(s)
Amphotericin B , Nebulizers and Vaporizers , Humans , Administration, Inhalation , Amphotericin B/adverse effects , Aerosols
2.
J Aerosol Med Pulm Drug Deliv ; 35(3): 146-153, 2022 06.
Article in English | MEDLINE | ID: mdl-34647795

ABSTRACT

Background: Inhaled drug delivery can be limited by heterogeneous dose distribution. An additive that would disperse drug over the internal surfaces of the lung after aerosol deposition could improve dosing uniformity and increase the treated area. Our previous studies demonstrated that surfactant additives can produce surface tension-driven (Marangoni) flows that effectively dispersed aerosol-delivered drugs over mucus surfaces. Here we sought to determine whether the addition of a surfactant would increase transport of an aerosol between lung regions and also improve dosing uniformity in human lungs. Methods: We compared the deposition and postdeposition dispersion of surfactant (10 mg/mL dipalmitoylphosphatidylcholine; DPPC) and saline-based liquid aerosols, admixed with Technetium 99m (Tc99m) diethylenetriaminepentaacetic acid, using gamma scintigraphy. Deposition images were obtained ex vivo in eight pairs of ventilated human lungs. The trachea was intubated and the mainstem bronchi were alternately clamped so that saline was delivered to one lung and then DPPC to the other (sides alternated). The lungs were continually imaged for 15 minutes during delivery. We assessed transport of the deposited aerosol by quantifying the percentage of Tc99m in each of four lung quadrants over time. We quantified dose uniformity within each lung quadrant by measuring the coefficient of variation (CV = standard deviation of the pixel associated radioactive counts/mean of the counts within each quadrant). Results: There was no change in the percentage of Tc99m in each quadrant over time, indicating no improvement in transport with the addition of the surfactant. The addition of surfactant was associated with a statistically significant decrease in CV in the lower inner lung quadrant at each of the three time points, indicating an improvement in dosing uniformity. Conclusion: These preliminary results indicate the possible utility of adding surfactant to aerosols to improve drug distribution uniformity to lower inner lung regions.


Subject(s)
Pulmonary Surfactants , Surface-Active Agents , Administration, Inhalation , Aerosols , Excipients , Humans , Lung , Nebulizers and Vaporizers , Technetium Tc 99m Pentetate
3.
ERJ Open Res ; 8(4)2022 Oct.
Article in English | MEDLINE | ID: mdl-36655223

ABSTRACT

Background: Human nasal epithelial (HNE) cells can be sampled noninvasively and cultured to provide a model of the airway epithelium that reflects cystic fibrosis (CF) pathophysiology. We hypothesised that in vitro measures of HNE cell physiology would correlate directly with in vivo measures of lung physiology and therapeutic response, providing a framework for using HNE cells for therapeutic development and precision medicine. Methods: We sampled nasal cells from participants with CF (CF group, n=26), healthy controls (HC group, n=14) and single CF transmembrane conductance regulator (CFTR) mutation carrier parents of the CF group (CR group, n=16). Participants underwent lung physiology and sweat chloride testing, and nuclear imaging-based measurement of mucociliary clearance (MCC) and small-molecule absorption (ABS). CF participants completed a second imaging day that included hypertonic saline (HS) inhalation to assess therapeutic response in terms of MCC. HNE measurements included Ussing chamber electrophysiology, small-molecule and liquid absorption rates, and particle diffusion rates through the HNE airway surface liquid (ASL) measured using fluorescence recovery after photobleaching (FRAP). Results: Long FRAP diffusion times were associated with increased MCC response to HS in CF. This implies a strong relationship between inherent factors affecting ASL mucin concentration and therapeutic response to a hydrating therapy. MCC decreased with age in the CR group, which had a larger range of ages than the other two groups. Likely this indicates a general age-related effect that may be accentuated in this group. Measures of lung ABS correlated with sweat chloride in both the HC and CF groups, indicating that CFTR function drives this measure of paracellular small-molecule probe absorption. Conclusions: Our results demonstrate the utility of HNE cultures for assessing therapeutic response for hydrating therapies. In vitro measurements of FRAP were particularly useful for predicting response and for characterising important properties of ASL mucus that were ultimately reflected in lung physiology.

SELECTION OF CITATIONS
SEARCH DETAIL
...