Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Inf Model ; 63(15): 4505-4532, 2023 08 14.
Article in English | MEDLINE | ID: mdl-37466636

ABSTRACT

The field of computational chemistry has seen a significant increase in the integration of machine learning concepts and algorithms. In this Perspective, we surveyed 179 open-source software projects, with corresponding peer-reviewed papers published within the last 5 years, to better understand the topics within the field being investigated by machine learning approaches. For each project, we provide a short description, the link to the code, the accompanying license type, and whether the training data and resulting models are made publicly available. Based on those deposited in GitHub repositories, the most popular employed Python libraries are identified. We hope that this survey will serve as a resource to learn about machine learning or specific architectures thereof by identifying accessible codes with accompanying papers on a topic basis. To this end, we also include computational chemistry open-source software for generating training data and fundamental Python libraries for machine learning. Based on our observations and considering the three pillars of collaborative machine learning work, open data, open source (code), and open models, we provide some suggestions to the community.


Subject(s)
Computational Chemistry , Software , Algorithms , Machine Learning
2.
Evol Comput ; 31(3): 287-307, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37023355

ABSTRACT

Quality diversity algorithms can be used to efficiently create a diverse set of solutions to inform engineers' intuition. But quality diversity is not efficient in very expensive problems, needing hundreds of thousands of evaluations. Even with the assistance of surrogate models, quality diversity needs hundreds or even thousands of evaluations, which can make its use infeasible. In this study, we try to tackle this problem by using a pre-optimization strategy on a lower-dimensional optimization problem and then map the solutions to a higher-dimensional case. For a use case to design buildings that minimize wind nuisance, we show that we can predict flow features around 3D buildings from 2D flow features around building footprints. For a diverse set of building designs, by sampling the space of 2D footprints with a quality diversity algorithm, a predictive model can be trained that is more accurate than when trained on a set of footprints that were selected with a space-filling algorithm like the Sobol sequence. Simulating only 16 buildings in 3D, a set of 1,024 building designs with low predicted wind nuisance is created. We show that we can produce better machine learning models by producing training data with quality diversity instead of using common sampling techniques. The method can bootstrap generative design in a computationally expensive 3D domain and allow engineers to sweep the design space, understanding wind nuisance in early design phases.


Subject(s)
Algorithms
3.
J Chem Inf Model ; 63(7): 1872-1881, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36942658

ABSTRACT

Force field-based models are a Newtonian mechanics approximation of reality and are inherently noisy. Coupling models from different molecular scale domains (including single, gas-phase molecules up to multimolecule, condensed phase ensembles) is difficult, which is also the case for finding solutions that transfer well between the scales. In this contribution, we introduce a surrogate-assisted algorithm to optimize Lennard-Jones parameters for target data from different scale domains to overcome the difficulties named above. Specifically, our approach combines a surrogate-assisted global evolutionary optimization method with a presampling phase that takes advantage of one scale domain being less computationally expensive to evaluate. The algorithm's components were evaluated individually, elucidating their individual merits. Our findings show that the process of parametrizing force fields can significantly benefit from both the presampling method, which alleviates the need to have a good initial guess for the parameters, and the surrogate model, which improves efficiency.

4.
Front Sports Act Living ; 4: 861466, 2022.
Article in English | MEDLINE | ID: mdl-35899138

ABSTRACT

This paper explores the role of artificial intelligence (AI) in elite sports. We approach the topic from two perspectives. Firstly, we provide a literature based overview of AI success stories in areas other than sports. We identified multiple approaches in the area of Machine Perception, Machine Learning and Modeling, Planning and Optimization as well as Interaction and Intervention, holding a potential for improving training and competition. Secondly, we discover the present status of AI use in elite sports. Therefore, in addition to another literature review, we interviewed leading sports scientist, which are closely connected to the main national service institute for elite sports in their countries. The analysis of this literature review and the interviews show that the most activity is carried out in the methodical categories of signal and image processing. However, projects in the field of modeling & planning have become increasingly popular within the last years. Based on these two perspectives, we extract deficits, issues and opportunities and summarize them in six key challenges faced by the sports analytics community. These challenges include data collection, controllability of an AI by the practitioners and explainability of AI results.

SELECTION OF CITATIONS
SEARCH DETAIL
...