Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
RSC Med Chem ; 14(11): 2342-2347, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37974969

ABSTRACT

A loss of prosecretory Cl- channel CFTR activity in the intestine is considered as the key cause of gastrointestinal problems in cystic fibrosis (CF): meconium ileus, distal intestinal obstruction syndrome (DIOS) and constipation. Since CFTR modulators have minimal effects on gastrointestinal symptoms, there is an unmet need for novel treatments for CF-associated gastrointestinal disorders. Meconium ileus and DIOS mainly affect the ileum (distal small intestine). SLC26A6 (putative anion transporter 1, PAT1) is a Cl-/HCO3- exchanger at the luminal membrane of small intestinal epithelial cells which facilitates Cl- and fluid absorption. We recently identified first-in-class PAT1 inhibitors by high-throughput screening. Isoxazolopyrimidine PAT1inh-A01 was a hit compound, which had low potency (IC50 5.2 µM) for SLC26A6 inhibition precluding further preclinical development. Here we performed structure-activity relationship studies to optimize isoxazolopyrimidine SLC26A6 inhibitors and tested a potent inhibitor in mouse models of intestinal fluid absorption. Structure-activity studies of 377 isoxazolopyrimidine analogs identified PAT1inh-A0030 (ethyl 4-(benzyl(methyl)amino)-3-methylisoxazolo[5,4-d]pyrimidine-6-carboxylate) as the most potent SLC26A6 inhibitor with a 1.0 µM IC50. Selectivity studies showed that PAT1inh-A030 has no activity on relevant ion transporters/channels (SLC26A3, SLC26A4, SLC26A9, CFTR, TMEM16A). In a closed-loop model of intestinal fluid absorption, intraluminal PAT1inh-A0030 treatment inhibited fluid absorption in the ileum of wild-type and CF mice (CftrdelF508/delF508) with >90% prevention of a decrease in loop fluid volume and loop weight/length ratio at 30 minutes. These results suggest that SLC26A6 is the key transporter mediating Cl- and fluid absorption in the ileum and SLC26A6 inhibitors are novel drug candidates for treatment of CF-associated small intestinal disorders.

2.
Nature ; 621(7980): 857-867, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37730992

ABSTRACT

Speciation leads to adaptive changes in organ cellular physiology and creates challenges for studying rare cell-type functions that diverge between humans and mice. Rare cystic fibrosis transmembrane conductance regulator (CFTR)-rich pulmonary ionocytes exist throughout the cartilaginous airways of humans1,2, but limited presence and divergent biology in the proximal trachea of mice has prevented the use of traditional transgenic models to elucidate ionocyte functions in the airway. Here we describe the creation and use of conditional genetic ferret models to dissect pulmonary ionocyte biology and function by enabling ionocyte lineage tracing (FOXI1-CreERT2::ROSA-TG), ionocyte ablation (FOXI1-KO) and ionocyte-specific deletion of CFTR (FOXI1-CreERT2::CFTRL/L). By comparing these models with cystic fibrosis ferrets3,4, we demonstrate that ionocytes control airway surface liquid absorption, secretion, pH and mucus viscosity-leading to reduced airway surface liquid volume and impaired mucociliary clearance in cystic fibrosis, FOXI1-KO and FOXI1-CreERT2::CFTRL/L ferrets. These processes are regulated by CFTR-dependent ionocyte transport of Cl- and HCO3-. Single-cell transcriptomics and in vivo lineage tracing revealed three subtypes of pulmonary ionocytes and a FOXI1-lineage common rare cell progenitor for ionocytes, tuft cells and neuroendocrine cells during airway development. Thus, rare pulmonary ionocytes perform critical CFTR-dependent functions in the proximal airway that are hallmark features of cystic fibrosis airway disease. These studies provide a road map for using conditional genetics in the first non-rodent mammal to address gene function, cell biology and disease processes that have greater evolutionary conservation between humans and ferrets.


Subject(s)
Cystic Fibrosis , Disease Models, Animal , Ferrets , Lung , Transgenes , Animals , Humans , Animals, Genetically Modified , Cell Lineage , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Ferrets/genetics , Ferrets/physiology , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Lung/cytology , Lung/metabolism , Lung/pathology , Trachea/cytology , Transgenes/genetics
3.
Eur J Med Chem ; 249: 115149, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36724632

ABSTRACT

The anion exchanger protein SLC26A3 (down-regulated in adenoma, DRA) is expressed in the luminal membrane of intestinal epithelial cells in colon, where it facilitates the absorption of Cl- and oxalate. We previously identified a 4,8-dimethylcoumarin class of SLC26A3 inhibitors that act from the SLC26A3 cytoplasmic surface, and demonstrated their efficacy in mouse models of constipation and hyperoxaluria. Here, screening of 50,000 new compounds and 1740 chemical analogs of active compounds from the primary screen produced five novel classes of SLC26A3-selective inhibitors (1,3-dioxoisoindoline-amides; N-(5-sulfamoyl-1,3,4-thiadiazol-2-yl)acetamides; thiazolo-pyrimidin-5-ones; 3-carboxy-2-phenylbenzofurans and benzoxazin-4-ones) with IC50 down to 100 nM. Kinetic washout and onset of action studies revealed an extracellular site of action for the thiazolo-pyrimidin-5-one and 3-carboxy-2-phenylbenzofuran inhibitors. Molecular docking computations revealed putative binding sites for these inhibitors. In a loperamide model of constipation in mice, orally administered 7-(2-chloro-phenoxymethyl)-3-phenyl-thiazolo [3,2-a]pyrimidin-5-one (3a) significantly increased stool weight, pellet number and water content. SLC26A3 inhibitors with an extracellular site of action offer the possibility of creating non-absorbable, luminally acting inhibitors with minimal systemic exposure following oral administration. Our findings also suggest that inhibitors of related SLC26 anion transporters with an extracellular site of action might be identified for pharmacological modulation of selected epithelial ion transport processes.


Subject(s)
Antiporters , Constipation , Mice , Animals , Antiporters/chemistry , Antiporters/metabolism , Antiporters/pharmacology , Molecular Docking Simulation , Biological Transport , Anions , Chlorides/metabolism , Sulfate Transporters/metabolism
4.
JCI Insight ; 7(13)2022 07 08.
Article in English | MEDLINE | ID: mdl-35608921

ABSTRACT

Nephrolithiasis is a common and recurrent disease affecting 9% of the US population. Hyperoxaluria is major risk factor for calcium oxalate kidney stones, which constitute two-thirds of all kidney stones. SLC26A3 (DRA, downregulated in adenoma) is an anion exchanger of chloride, bicarbonate, and oxalate thought to facilitate intestinal oxalate absorption, as evidenced by approximately 70% reduced urine oxalate excretion in knockout mice. We previously identified a small-molecule SLC26A3 inhibitor (DRAinh-A270) that selectively inhibited SLC26A3-mediated chloride/bicarbonate exchange (IC50 ~ 35 nM) and, as found here, oxalate/chloride exchange (IC50 ~ 60 nM). In colonic closed loops in mice, luminal DRAinh-A270 inhibited oxalate absorption by 70%. Following oral sodium oxalate loading in mice, DRAinh-A270 largely prevented the 2.5-fold increase in urine oxalate/creatinine ratio. In a mouse model of oxalate nephropathy produced by a high-oxalate low-calcium diet, vehicle-treated mice developed marked hyperoxaluria with elevated serum creatinine, renal calcium oxalate crystal deposition, and renal injury, which were largely prevented by DRAinh-A270 (10 mg/kg twice daily). DRAinh-A270 administered over 7 days to healthy mice did not show significant toxicity. Our findings support a major role of SLC26A3 in intestinal oxalate absorption and suggest the therapeutic utility of SLC26A3 inhibition for treatment of hyperoxaluria and prevention of calcium oxalate nephrolithiasis.


Subject(s)
Hyperoxaluria , Kidney Calculi , Animals , Antiporters , Bicarbonates , Calcium Oxalate , Chlorides/metabolism , Hyperoxaluria/drug therapy , Hyperoxaluria/etiology , Kidney Calculi/complications , Kidney Calculi/drug therapy , Kidney Calculi/prevention & control , Mice , Oxalates , Sulfate Transporters
5.
Am J Physiol Lung Cell Mol Physiol ; 322(3): L420-L437, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35080188

ABSTRACT

Organoids, which are self-organizing three-dimensional cultures, provide models that replicate specific cellular components of native tissues or facets of organ complexity. We describe a simple method to generate organoid cultures using isolated human tracheobronchial epithelial cells grown in mixed matrix components and supplemented at day 14 with the Wnt pathway agonist R-spondin 2 (RSPO2) and the bone morphogenic protein antagonist Noggin. In contrast to previous reports, our method produces differentiated tracheobronchospheres with externally orientated apical membranes without pretreatments, providing an epithelial model to study cilia formation and function, disease pathogenesis, and interaction of pathogens with the respiratory mucosa. Starting from 3 × 105 cells, organoid yield at day 28 was 1,720 ± 302. Immunocytochemistry confirmed the cellular localization of airway epithelial markers, including CFTR, Na+/K+ ATPase, acetylated-α-tubulin, E-cadherin, and ZO-1. Compared to native tissues, expression of genes related to bronchial differentiation and ion transport were similar in organoid and air-liquid interface (ALI) cultures. In matched primary cultures, mean organoid cilia length was 6.1 ± 0.2 µm, similar to that of 5.7 ± 0.1 µm in ALI cultures, and ciliary beating was vigorous and coordinated with frequencies of 7.7 ± 0.3 Hz in organoid cultures and 5.3 ± 0.8 Hz in ALI cultures. Functional measurement of osmotically induced volume changes in organoids showed low water permeability. The generation of numerous single testable units from minimal starting material complements prior techniques. This culture system may be useful for studying airway biology and pathophysiology, aiding diagnosis of ciliopathies, and potentially for high-throughput drug screening.


Subject(s)
Organoids , Respiratory Mucosa , Bronchi , Cell Differentiation , Cells, Cultured , Epithelial Cells/metabolism , Humans , Organoids/metabolism , Respiratory Mucosa/metabolism
6.
JCI Insight ; 6(11)2021 06 08.
Article in English | MEDLINE | ID: mdl-34100381

ABSTRACT

SLC26A6 (also known as putative anion transporter 1 [PAT1]) is a Cl-/HCO3- exchanger expressed at the luminal membrane of enterocytes where it facilitates intestinal Cl- and fluid absorption. Here, high-throughput screening of 50,000 synthetic small molecules in cells expressing PAT1 and a halide-sensing fluorescent protein identified several classes of inhibitors. The most potent compound, the pyrazolo-pyrido-pyrimidinone PAT1inh-B01, fully inhibited PAT1-mediated anion exchange (IC50 ~350 nM), without inhibition of the related intestinal transporter SLC26A3 (also known as DRA). In closed midjejunal loops in mice, PAT1inh-B01 inhibited fluid absorption by 50%, which increased to >90% when coadministered with DRA inhibitor DRAinh-A270. In ileal loops, PAT1inh-B01 blocked fluid absorption by >80%, whereas DRAinh-A270 was without effect. In colonic loops, PAT1inh-B01 was without effect, whereas DRAinh-A270 completely blocked fluid absorption. In a loperamide constipation model, coadministration of PAT1inh-B01 with DRAinh-A270 increased stool output compared with DRAinh-A270 alone. These results provide functional evidence for complementary and region-specific roles of PAT1 and DRA in intestinal fluid absorption, with PAT1 as the predominant anion exchanger in mouse ileum. We believe that PAT1inh-B01 is a novel tool to study intestinal ion and fluid transport and perhaps a drug candidate for small intestinal hyposecretory disorders such as cystic fibrosis-related meconium ileus and distal intestinal obstruction syndrome.


Subject(s)
Antiporters/antagonists & inhibitors , Colon/drug effects , Ileum/drug effects , Intestinal Absorption/drug effects , Jejunum/drug effects , Sulfate Transporters/antagonists & inhibitors , Animals , Antidiarrheals/pharmacology , Antiporters/metabolism , Colon/metabolism , Constipation/chemically induced , Constipation/metabolism , Dopamine Plasma Membrane Transport Proteins/drug effects , Drug Evaluation, Preclinical , HEK293 Cells , Humans , Ileum/metabolism , Intestine, Small/drug effects , Intestine, Small/metabolism , Jejunum/metabolism , Loperamide/pharmacology , Mice , Small Molecule Libraries , Sulfate Transporters/metabolism
7.
Kidney Int ; 100(2): 311-320, 2021 08.
Article in English | MEDLINE | ID: mdl-33836171

ABSTRACT

Hypertension is a major cause of cardiovascular morbidity and mortality, despite the availability of antihypertensive drugs with different targets and mechanisms of action. Here, we provide evidence that pharmacological inhibition of TMEM16A (ANO1), a calcium-activated chloride channel expressed in vascular smooth muscle cells, blocks calcium-activated chloride currents and contraction in vascular smooth muscle in vitro and decreases blood pressure in spontaneously hypertensive rats. The acylaminocycloalkylthiophene TMinh-23 fully inhibited calcium-activated TMEM16A chloride current with nanomolar potency in Fischer rat thyroid cells expressing TMEM16A, and in primary cultures of rat vascular smooth muscle cells. TMinh-23 reduced vasoconstriction caused by the thromboxane mimetic U46619 in mesenteric resistance arteries of wild-type and spontaneously hypertensive rats, with a greater inhibition in spontaneously hypertensive rats. Blood pressure measurements by tail-cuff and telemetry showed up to a 45-mmHg reduction in systolic blood pressure lasting for four-six hours in spontaneously hypertensive rats after a single dose of TMinh-23. A minimal effect on blood pressure was seen in wild-type rats or mice treated with TMinh-23. Five-day twice daily treatment of spontaneously hypertensive rats with TMinh-23 produced sustained reductions of 20-25 mmHg in daily mean systolic and diastolic blood pressure. TMinh-23 action was reversible, with blood pressure returning to baseline in spontaneously hypertensive rats by three days after treatment discontinuation. Thus, our studies provide validation for TMEM16A as a target for antihypertensive therapy and demonstrate the efficacy of TMinh-23 as an antihypertensive with a novel mechanism of action.


Subject(s)
Anoctamin-1/antagonists & inhibitors , Hypertension , Muscle, Smooth, Vascular , Vasoconstriction , Animals , Blood Pressure/drug effects , Chloride Channels , Hypertension/drug therapy , Muscle Contraction/drug effects , Rats , Rats, Inbred SHR
8.
J Cyst Fibros ; 20(3): 452-459, 2021 05.
Article in English | MEDLINE | ID: mdl-32674984

ABSTRACT

BACKGROUND: The c.3700A>G mutation, a rare cystic fibrosis (CF)-causing CFTR mutation found mainly in the Middle East, produces full-length transcript encoding a missense mutation (I1234V-CFTR), and a cryptic splice site that deletes 6 amino acids in nucleotide binding domain 2 (I1234del-CFTR). METHODS: FRT cell models expressing I1234V-CFTR and I1234del-CFTR were generated. We also studied an I1234del-CFTR-expressing gene-edited human bronchial (16HBE14o-) cell model, and primary cultures of nasal epithelial cells from a c.3700A>G homozygous subject. To identify improved mutation-specific CFTR modulators, high-throughput screening was done using I1234del-CFTR-expressing FRT cells. Motivated by the in vitro findings, Trikafta was tested in two c.3700A>G homozygous CF subjects. RESULTS: FRT cells expressing full-length I1234V-CFTR had similar function to that of wildtype CFTR. I1234del-CFTR showed reduced activity, with modest activation seen with potentiators VX-770 and GLPG1837, correctors VX-809, VX-661 and VX-445, and low-temperature incubation. Screening identified novel arylsulfonyl-piperazine and spiropiperidine-quinazolinone correctors, which when used in combination with VX-445 increased current ~2-fold compared with the VX-661/VX-445 combination. The combination of VX-770 with arylsulfonamide-pyrrolopyridine, piperidine-pyridoindole or pyrazolo-quinoline potentiators gave 2-4-fold greater current than VX-770 alone. Combination potentiator (co-potentiator) efficacy was also seen in gene-edited I1234del-CFTR-expressing human bronchial epithelial cells. In two CF subjects homozygous for the c.3700A>G mutation, one subject had a 27 mmol/L decrease in sweat chloride and symptomatic improvement on Trikafta, and a second subject showed a small improvement in lung function. CONCLUSIONS: These results support the potential benefit of CFTR modulators, including co-potentiators, for CF caused by the c.3700A>G mutation.


Subject(s)
Chloride Channel Agonists/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Mutant Proteins/drug effects , Mutation, Missense , Aminophenols , Aminopyridines , Benzodioxoles , Cells, Cultured , Humans , Indoles , Pyrazoles , Pyridines , Pyrrolidines , Quinolones
9.
Eur J Med Chem ; 209: 112888, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33092904

ABSTRACT

We previously identified a spiro [piperidine-4,1-pyrido [3,4-b]indole] class of co-potentiators that function in synergy with existing CFTR potentiators such as VX-770 or GLGP1837 to restore channel activity of a defined subset of minimal function cystic fibrosis transmembrane conductance regulator (CFTR) mutants. Here, structure-activity studies were conducted to improve their potency over the previously identified compound, 20 (originally termed CP-A01). Targeted synthesis of 37 spiro [piperidine-4,1-pyrido [3,4-b]indoles] was generally accomplished using versatile two or three step reaction protocols with each step having high efficiency. Structure-activity relationship studies established that analog 2i, with 6'-methoxyindole and 2,4,5-trifluorobenzyl substituents, had the greatest potency for activation of N1303K-CFTR, with EC50 ∼600 nM representing an ∼17-fold improvement over the original compound identified in a small molecule screen.


Subject(s)
Chloride Channel Agonists/chemistry , Chloride Channel Agonists/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/agonists , Indoles/chemistry , Indoles/pharmacology , Aminophenols/pharmacology , Animals , Cell Line , Chloride Channel Agonists/chemical synthesis , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Indoles/chemical synthesis , Models, Molecular , Mutation , Piperidines/chemical synthesis , Piperidines/chemistry , Piperidines/pharmacology , Quinolones/pharmacology , Rats , Structure-Activity Relationship
10.
J Cyst Fibros ; 19 Suppl 1: S25-S32, 2020 03.
Article in English | MEDLINE | ID: mdl-31902693

ABSTRACT

The treatment of cystic fibrosis (CF) has been transformed by orally-bioavailable small molecule modulators of the cystic fibrosis transmembrane conductance regulator (CFTR), which restore function to CF mutants. However, CFTR modulators are not available to all people with CF and better modulators are required to prevent disease progression. Here, we review selectively recent advances in CFTR folding, function and pharmacology. We highlight ensemble and single-molecule studies of CFTR folding, which provide new insight into CFTR assembly, its perturbation by CF mutations and rescue by CFTR modulators. We discuss species-dependent differences in the action of the F508del-CFTR mutation on CFTR expression, stability and function, which might influence pharmacological studies of CFTR modulators in CF animal models. Finally, we illuminate the identification of combinations of two CFTR potentiators (termed co-potentiators), which restore therapeutically-relevant levels of CFTR activity to rare CF mutations. Thus, mechanistic studies of CFTR folding, function and pharmacology inform the development of highly effective CFTR modulators.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator , Cystic Fibrosis , Membrane Transport Modulators/pharmacology , Molecular Targeted Therapy , Animals , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Humans , Molecular Medicine/methods , Molecular Medicine/trends , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , Mutation , Pharmacogenomic Testing
11.
J Clin Invest ; 130(4): 2041-2053, 2020 04 01.
Article in English | MEDLINE | ID: mdl-31961827

ABSTRACT

Cystic fibrosis (CF) lung disease is characterized by an inflammatory response that can lead to terminal respiratory failure. The cystic fibrosis transmembrane conductance regulator (CFTR) is mutated in CF, and we hypothesized that dysfunctional CFTR in platelets, which are key participants in immune responses, is a central determinant of CF inflammation. We found that deletion of CFTR in platelets produced exaggerated acute lung inflammation and platelet activation after intratracheal LPS or Pseudomonas aeruginosa challenge. CFTR loss of function in mouse or human platelets resulted in agonist-induced hyperactivation and increased calcium entry into platelets. Inhibition of the transient receptor potential cation channel 6 (TRPC6) reduced platelet activation and calcium flux, and reduced lung injury in CF mice after intratracheal LPS or Pseudomonas aeruginosa challenge. CF subjects receiving CFTR modulator therapy showed partial restoration of CFTR function in platelets, which may be a convenient approach to monitoring biological responses to CFTR modulators. We conclude that CFTR dysfunction in platelets produces aberrant TRPC6-dependent platelet activation, which is a major driver of CF lung inflammation and impaired bacterial clearance. Platelets and TRPC6 are what we believe to be novel therapeutic targets in the treatment of CF lung disease.


Subject(s)
Blood Platelets/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Cystic Fibrosis/metabolism , Lung/metabolism , Pneumonia, Bacterial/metabolism , Pseudomonas Infections/metabolism , Pseudomonas aeruginosa/metabolism , Animals , Blood Platelets/pathology , Cystic Fibrosis/genetics , Cystic Fibrosis/microbiology , Cystic Fibrosis/pathology , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Lung/pathology , Male , Mice , Mice, Knockout , Platelet Activation/genetics , Pneumonia, Bacterial/genetics , Pneumonia, Bacterial/pathology , Pseudomonas Infections/genetics , Pseudomonas Infections/pathology , TRPC6 Cation Channel/genetics , TRPC6 Cation Channel/metabolism
12.
Sci Rep ; 9(1): 17640, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31776420

ABSTRACT

Available CFTR modulators provide no therapeutic benefit for cystic fibrosis (CF) caused by many loss-of-function mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, including N1303K. We previously introduced the concept of 'co-potentiators' (combination-potentiators) to rescue CFTR function in some minimal function CFTR mutants. Herein, a screen of ~120,000 drug-like synthetic small molecules identified active co-potentiators of pyrazoloquinoline, piperidine-pyridoindole, tetrahydroquinoline and phenylazepine classes, with EC50 down to ~300 nM following initial structure-activity studies. Increased CFTR chloride conductance by up to 8-fold was observed when a co-potentiator (termed 'Class II potentiator') was used with a classical potentiator ('Class I potentiator') such as VX-770 or GLPG1837. To investigate the range of CFTR mutations benefitted by co-potentiators, 14 CF-associated CFTR mutations were studied in transfected cell models. Co-potentiator efficacy was found for CFTR missense, deletion and nonsense mutations in nucleotide binding domain-2 (NBD2), including W1282X, N1303K, c.3700A > G and Q1313X (with corrector for some mutations). In contrast, CFTR mutations G85E, R334W, R347P, V520F, R560T, A561E, M1101K and R1162X showed no co-potentiator activity, even with corrector. Co-potentiator efficacy was confirmed in primary human bronchial epithelial cell cultures generated from a N1303K homozygous CF subject. The Class II potentiators identified here may have clinical benefit for CF caused by mutations in the NBD2 domain of CFTR.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Cystic Fibrosis/metabolism , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Drug Discovery , Drug Synergism , High-Throughput Screening Assays , Humans , Mutation , Piperidines/therapeutic use , Pyrazoles/therapeutic use , Structure-Activity Relationship
13.
J Med Chem ; 62(17): 8330-8337, 2019 09 12.
Article in English | MEDLINE | ID: mdl-31389695

ABSTRACT

The chloride/bicarbonate exchanger SLC26A3 (downregulated in adenoma) is expressed mainly in colonic epithelium, where it dehydrates the stool by facilitating the final step of chloride and fluid absorption. SLC26A3 inhibition has predicted efficacy in various types of constipation including that associated with cystic fibrosis. We previously identified, by high-throughput screening, 4,8-dimethylcoumarin inhibitors of murine slc26a3 with IC50 down to ∼150 nM. Here, we synthesized a focused library of forty-three 4,8-dimethylcoumarin analogues. Structure-activity studies revealed the requirement of 4,8-dimethylcoumarin-3-acetic acid for activity. The most potent inhibitors were produced by replacements at C7, including 3-iodo- (4az) and 3-trifluoromethyl- (4be), with IC50 of 40 and 25 nM, respectively. Pharmacokinetics in mice showed predicted therapeutic concentrations of 4az for >72 h following a single 10 mg/kg oral dose. 4az at 10 mg/kg fully normalized stool water content in a loperamide-induced mouse model of constipation. The favorable inhibition potency, selectivity within the SLC26 family, and pharmacological properties of 4az support its further preclinical development.


Subject(s)
Antiporters/pharmacology , Constipation/drug therapy , Coumarins/pharmacology , Down-Regulation/drug effects , Intestinal Mucosa/drug effects , Sulfate Transporters/antagonists & inhibitors , Animals , Antiporters/antagonists & inhibitors , Antiporters/chemical synthesis , Antiporters/chemistry , Constipation/chemically induced , Coumarins/chemical synthesis , Coumarins/chemistry , Disease Models, Animal , Dose-Response Relationship, Drug , Female , Intestinal Mucosa/metabolism , Loperamide , Mice , Molecular Structure , Structure-Activity Relationship
14.
Bioorg Med Chem Lett ; 29(16): 2119-2123, 2019 08 15.
Article in English | MEDLINE | ID: mdl-31281021

ABSTRACT

Pendrin is a transmembrane chloride/anion antiporter that is strongly upregulated in the airways in rhinoviral infection, asthma, cystic fibrosis and chronic rhinosinusitis. Based on its role in the regulation of airway surface liquid depth, pendrin inhibitors have potential indications for treatment of inflammatory airways diseases. Here, a completely regioselective route to tetrahydro-pyrazolopyridine pendrin inhibitors based on 1,3-diketone and substituted hydrazine condensation was been developed. Structure-activity relationships at the tetrahydropyridyl nitrogen were investigated using a focused library, establishing the privileged nature of N-phenyl ureas and improving inhibitor potency by greater than 2-fold.


Subject(s)
Pyrazoles/pharmacology , Pyridines/pharmacology , Sulfate Transporters/antagonists & inhibitors , Animals , Mice , Molecular Structure , Pyrazoles/chemical synthesis , Pyridines/chemical synthesis , Rats, Inbred F344 , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacology , Structure-Activity Relationship
15.
JCI Insight ; 3(14)2018 07 26.
Article in English | MEDLINE | ID: mdl-30046015

ABSTRACT

SLC26A3 (downregulated in adenoma; DRA) is a Cl-/anion exchanger expressed in the luminal membrane of intestinal epithelial cells, where it facilitates electroneutral NaCl absorption. SLC26A3 loss of function in humans or mice causes chloride-losing diarrhea. Here, we identified slc26a3 inhibitors in a screen of 50,000 synthetic small molecules done in Fischer rat thyroid (FRT) cells coexpressing slc26a3 and a genetically encoded halide sensor. Structure-activity relationship studies were done on the most potent inhibitor classes identified in the screen: 4,8-dimethylcoumarins and acetamide-thioimidazoles. The dimethylcoumarin DRAinh-A250 fully and reversibly inhibited slc26a3-mediated Cl- exchange with HCO3-, I-, and thiocyanate (SCN-), with an IC50 of ~0.2 µM. DRAinh-A250 did not inhibit the homologous anion exchangers slc26a4 (pendrin) or slc26a6 (PAT-1), nor did it alter activity of other related proteins or intestinal ion channels. In mice, intraluminal DRAinh-A250 blocked fluid absorption in closed colonic loops but not in jejunal loops, while the NHE3 (SLC9A3) inhibitor tenapanor blocked absorption only in the jejunum. Oral DRAinh-A250 and tenapanor comparably reduced signs of constipation in loperamide-treated mice, with additive effects found on coadministration. DRAinh-A250 was also effective in loperamide-treated cystic fibrosis mice. These studies support a major role of slc26a3 in colonic fluid absorption and suggest the therapeutic utility of SLC26A3 inhibition in constipation.


Subject(s)
Antiporters/pharmacology , Constipation/drug therapy , Sulfate Transporters/antagonists & inhibitors , Sulfate Transporters/metabolism , Animals , Antiporters/antagonists & inhibitors , Antiporters/chemistry , Antiporters/genetics , Antiporters/metabolism , Chloride-Bicarbonate Antiporters/pharmacology , Chlorides/metabolism , Cystic Fibrosis , Disease Models, Animal , Drug Evaluation, Preclinical , Epithelial Cells/drug effects , Epithelial Cells/metabolism , HEK293 Cells , High-Throughput Screening Assays , Humans , Ion Transport , Loperamide/pharmacology , Mice , Rats , Rats, Inbred F344 , Sodium-Hydrogen Exchanger 3/pharmacology , Sulfate Transporters/genetics , Sulfate Transporters/pharmacology
16.
J Cyst Fibros ; 17(5): 595-606, 2018 09.
Article in English | MEDLINE | ID: mdl-29903467

ABSTRACT

BACKGROUND: Current modulator therapies for some cystic fibrosis-causing CFTR mutants, including N1303K, have limited efficacy. We provide evidence here to support combination potentiator (co-potentiator) therapy for mutant CFTRs that are poorly responsive to single potentiators. METHODS: Functional synergy screens done on N1303K and W1282X CFTR, in which small molecules were tested with VX-770, identified arylsulfonamide-pyrrolopyridine, phenoxy-benzimidazole and flavone co-potentiators. RESULTS: A previously identified arylsulfonamide-pyrrolopyridine co-potentiator (ASP-11) added with VX-770 increased N1303K-CFTR current 7-fold more than VX-770 alone. ASP-11 increased by ~65% of the current of G551D-CFTR compared to VX-770, was additive with VX-770 on F508del-CFTR, and activated wild-type CFTR in the absence of a cAMP agonist. ASP-11 efficacy with VX-770 was demonstrated in primary CF human airway cell cultures having N1303K, W1282X and G551D CFTR mutations. Structure-activity studies on 11 synthesized ASP-11 analogs produced compounds with EC50 down to 0.5 µM. CONCLUSIONS: These studies support combination potentiator therapy for CF caused by some CFTR mutations that are not effectively treated by single potentiators.


Subject(s)
Aminophenols/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/drug effects , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis/drug therapy , Cystic Fibrosis/genetics , Quinolones/pharmacology , Sulfonamides/pharmacology , Animals , Cell Line , Cells, Cultured , Drug Synergism , Humans , Ion Channel Gating/drug effects , Mutant Proteins/drug effects , Mutation , Structure-Activity Relationship
17.
SLAS Discov ; 23(8): 823-831, 2018 09.
Article in English | MEDLINE | ID: mdl-29533733

ABSTRACT

The most common cystic fibrosis-causing mutation in the cystic fibrosis transmembrane conductance regulator (CFTR) is deletion of phenylalanine at residue 508 (∆F508). The ∆F508 mutation impairs folding of nucleotide binding domain 1 (NBD1) and interfacial interactions of NBD1 and the membrane spanning domains. Here, we report a domain-targeted screen to identify ∆F508-CFTR modulators that act on NBD1. A biochemical screen for ΔF508-NBD1 cell surface expression was done in Madin-Darby canine kidney cells expressing a chimeric reporter consisting of ΔF508-NBD1, the CD4 transmembrane domain, and an extracellular horseradish peroxidase (HRP) reporter. Using a luminescence readout of HRP activity, the screen was robust with a Z' factor of 0.7. The screening of ~20,000 synthetic small molecules allowed the identification of compounds from four chemical classes that increased ∆F508-NBD1 cell surface expression by up to 4-fold; for comparison, a 12-fold increased cell surface expression was found for a wild-type NBD1 chimera. While the compounds were inactive as correctors of full-length ΔF508-CFTR, several carboxamide-benzothiophenes had potentiator activity with low micromolar EC50. Interestingly, the potentiators did not activate G551D or wild-type CFTR. Our results provide a proof of concept for a cell-based NBD1 domain screen to identify ∆F508-CFTR modulators that target the NBD1 domain.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Drug Discovery/methods , Gene Expression Regulation/drug effects , Genes, Reporter , Protein Interaction Domains and Motifs/drug effects , Animals , Cell Line , Cell Membrane/metabolism , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/chemistry , High-Throughput Screening Assays , Humans , Molecular Structure , Structure-Activity Relationship
18.
J Biol Chem ; 292(3): 771-785, 2017 01 20.
Article in English | MEDLINE | ID: mdl-27895116

ABSTRACT

W1282X is the fifth most common cystic fibrosis transmembrane regulator (CFTR) mutation that causes cystic fibrosis. Here, we investigated the utility of a small molecule corrector/potentiator strategy, as used for ΔF508-CFTR, to produce functional rescue of the truncated translation product of the W1282X mutation, CFTR1281, without the need for read-through. In transfected cell systems, certain potentiators and correctors, including VX-809 and VX-770, increased CFTR1281 activity. To identify novel correctors and potentiators with potentially greater efficacy on CFTR1281, functional screens were done of ∼30,000 synthetic small molecules and drugs/nutraceuticals in CFTR1281-transfected cells. Corrector scaffolds of 1-arylpyrazole-4-arylsulfonyl-piperazine and spiro-piperidine-quinazolinone classes were identified with up to ∼5-fold greater efficacy than VX-809, some of which were selective for CFTR1281, whereas others also corrected ΔF508-CFTR. Several novel potentiator scaffolds were identified with efficacy comparable with VX-770; remarkably, a phenylsulfonamide-pyrrolopyridine acted synergistically with VX-770 to increase CFTR1281 function ∼8-fold over that of VX-770 alone, normalizing CFTR1281 channel activity to that of wild type CFTR. Corrector and potentiator combinations were tested in primary cultures and conditionally reprogrammed cells generated from nasal brushings from one W1282X homozygous subject. Although robust chloride conductance was seen with correctors and potentiators in homozygous ΔF508 cells, increased chloride conductance was not found in W1282X cells despite the presence of adequate transcript levels. Notwithstanding the negative data in W1282X cells from one human subject, we speculate that corrector and potentiator combinations may have therapeutic efficacy in cystic fibrosis caused by the W1282X mutation, although additional studies are needed on human cells from W1282X subjects.


Subject(s)
Aminophenols/pharmacology , Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Mutation, Missense , Piperazines/pharmacology , Quinolones/pharmacology , Amino Acid Substitution , Animals , Cells, Cultured , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Humans , Rats , Rats, Inbred F344
19.
PLoS Pathog ; 12(5): e1005628, 2016 May.
Article in English | MEDLINE | ID: mdl-27191388

ABSTRACT

[This corrects the article DOI: 10.1371/journal.ppat.1003576.].

20.
J Am Soc Nephrol ; 27(12): 3706-3714, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27153921

ABSTRACT

Pendrin is a Cl-/HCO3- exchanger expressed in type B and non-A, non-B intercalated cells in the distal nephron, where it facilitates Cl- absorption and is involved in Na+ absorption and acid-base balance. Pendrin-knockout mice show no fluid-electrolyte abnormalities under baseline conditions, although mice with double knockout of pendrin and the Na+/Cl- cotransporter (NCC) manifest profound salt wasting. Thus, pendrin may attenuate diuretic-induced salt loss, but this function remains unconfirmed. To clarify the physiologic role of pendrin under conditions not confounded by gene knockout, and to test the potential utility of pendrin inhibitors for diuretic therapy, we tested in mice a small-molecule pendrin inhibitor identified from a high-throughput screen. In vitro, a pyrazole-thiophenesulfonamide, PDSinh-C01, inhibited Cl-/anion exchange mediated by mouse pendrin with a 50% inhibitory concentration of 1-3 µM, without affecting other major kidney tubule transporters. Administration of PDSinh-C01 to mice at predicted therapeutic doses, determined from serum and urine pharmacokinetics, did not affect urine output, osmolality, salt excretion, or acid-base balance. However, in mice treated acutely with furosemide, administration of PDSinh-C01 produced a 30% increase in urine output, with increased Na+ and Cl- excretion. In mice treated long term with furosemide, in which renal pendrin is upregulated, PDSinh-C01 produced a 60% increase in urine output. Our findings clarify the role of pendrin in kidney function and suggest pendrin inhibition as a novel approach to potentiate the action of loop diuretics. Such combination therapy might enhance diuresis and salt excretion for treatment of hypertension and edema, perhaps including diuretic-resistant edema.


Subject(s)
Anion Transport Proteins/antagonists & inhibitors , Diuretics/pharmacology , Furosemide/pharmacology , Sulfonamides/pharmacology , Thiophenes/pharmacology , Animals , Drug Synergism , Female , Mice , Sulfate Transporters
SELECTION OF CITATIONS
SEARCH DETAIL
...