Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Appl Ergon ; 109: 103969, 2023 May.
Article in English | MEDLINE | ID: mdl-36702001

ABSTRACT

This study examines the effects of noise and the use of an Intelligent Virtual Assistant (IVA) on the task performance and workload of office workers. Data were collected from forty-eight adults across varied office task scenarios (i.e., sending an email, setting up a timer/reminder, and searching for a phone number/address) and noise types (i.e., silence, non-verbal noise, and verbal noise). The baseline for this study is measured without the use of an IVA. Significant differences in performance and workload were found on both objective and subjective measures. In particular, verbal noise emerged as the primary factor affecting performance using an IVA. Task performance was dependent on the task scenario and noise type. Subjective ratings found that participants preferred to use IVA for less complex tasks. Future work can focus more on the effects of tasks, demographics, and learning curves. Furthermore, this work can help guide IVA system designers by highlighting factors affecting performance.


Subject(s)
Task Performance and Analysis , Workload , Adult , Humans , Noise , User-Computer Interface
3.
Sci Rep ; 13(1): 1363, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36693935

ABSTRACT

Squatting is an intensive activity routinely performed in the workplace to lift and lower loads. The effort to perform a squat can decrease using an exoskeleton that considers individual worker's differences and assists them with a customized solution, namely, personalized assistance. Designing such an exoskeleton could be improved by understanding how the user's muscle activity changes when assistance is provided. This study investigated the change in the muscle recruitment and activation pattern when personalized assistance was provided. The personalized assistance was provided by an ankle-foot exoskeleton during squatting and we compared its effect with that of the no-device and unpowered exoskeleton conditions using previously collected data. We identified four main muscle recruitment strategies across ten participants. One of the strategies mainly used quadriceps muscles, and the activation level corresponding to the strategy was reduced under exoskeleton assistance compared to the no-device and unpowered conditions. These quadriceps dominant synergy and rectus femoris activations showed reasonable correlations (r = 0.65, 0.59) to the metabolic cost of squatting. These results indicate that the assistance helped reduce quadriceps activation, and thus, the metabolic cost of squatting. These outcomes suggest that the muscle recruitment and activation patterns could be used to design an exoskeleton and training methods.


Subject(s)
Exoskeleton Device , Robotic Surgical Procedures , Humans , Ankle/physiology , Walking/physiology , Muscle, Skeletal/physiology , Electromyography , Biomechanical Phenomena , Ankle Joint/physiology , Gait/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...