Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Phys Rev Lett ; 132(19): 196402, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38804933

ABSTRACT

Chiral crystals and molecules were recently predicted to form an intriguing platform for unconventional orbital physics. Here, we report the observation of chirality-driven orbital textures in the bulk electronic structure of CoSi, a prototype member of the cubic B20 family of chiral crystals. Using circular dichroism in soft x-ray angle-resolved photoemission, we demonstrate the formation of a bulk orbital-angular-momentum texture and monopolelike orbital-momentum locking that depends on crystal handedness. We introduce the intrinsic chiral circular dichroism, icCD, as a differential photoemission observable and a natural probe of chiral electron states. Our findings render chiral crystals promising for spin-orbitronics applications.

2.
J Synchrotron Radiat ; 31(Pt 3): 540-546, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38619289

ABSTRACT

The soft X-ray photoelectron momentum microscopy (PMM) experimental station at the UVSOR Synchrotron Facility has been recently upgraded by additionally guiding vacuum ultraviolet (VUV) light in a normal-incidence configuration. PMM offers a very powerful tool for comprehensive electronic structure analyses in real and momentum spaces. In this work, a VUV beam with variable polarization in the normal-incidence geometry was obtained at the same sample position as the soft X-ray beam from BL6U by branching the VUV beamline BL7U. The valence electronic structure of the Au(111) surface was measured using horizontal and vertical linearly polarized (s-polarized) light excitations from BL7U in addition to horizontal linearly polarized (p-polarized) light excitations from BL6U. Such highly symmetric photoemission geometry with normal incidence offers direct access to atomic orbital information via photon polarization-dependent transition-matrix-element analysis.

3.
Biol Pharm Bull ; 47(1): 240-244, 2024.
Article in English | MEDLINE | ID: mdl-38246611

ABSTRACT

Studies showing that Panax ginseng promotes hair growth have largely been conducted using mice; there are few reports on how P. ginseng affects human hair growth. In particular, little is known about its effect on the telogen to anagen transition. To determine the effect of P. ginseng on human hair growth and the transition from the telogen to the anagen phase. The effects of P. ginseng extract (PGE) and the three major ginsenoside components, Rb1, Rg1, and Re, on the proliferation of human dermal papilla cells (DPCs) and human outer root sheath cells (ORSCs) were investigated. The effects of these compounds on the cell expression of bone morphogenetic protein 4 (BMP4), fibroblast growth factor 18 (FGF18) and Noggin were assessed by real-time PCR. The effect of PGE on hair-shaft elongation was determined in a human hair follicle organ-culture system. PGE and the three ginsenosides stimulated the proliferation of DPCs and ORSCs and suppressed BMP4 expression in DPCs but did not affect FGF18 expression in ORSCs and Noggin expression in DPCs. PGE stimulated hair-shaft growth. PGE and the ginsenosides Rb1, Rg1, and Re stimulate the transition from the telogen phase to anagen phase of the hair cycle by suppressing BMP4 expression in DPCs. These compounds might be useful for promoting the growth of human hair.


Subject(s)
Ginsenosides , Panax , Humans , Animals , Mice , Ginsenosides/pharmacology , Bone Morphogenetic Protein 4 , Cell Proliferation , Hair , Plant Extracts/pharmacology
4.
Rev Sci Instrum ; 94(8)2023 Aug 01.
Article in English | MEDLINE | ID: mdl-38065145

ABSTRACT

The photoelectron momentum microscope (PMM) in operation at BL6U, an undulator-based soft x-ray beamline at the UVSOR Synchrotron Facility, offers a new approach for µm-scale momentum-resolved photoelectron spectroscopy (MRPES). A key feature of the PMM is that it can very effectively reduce radiation-induced damage by directly projecting a single photoelectron constant energy contour in reciprocal space with a radius of a few Å-1 or real space with a radius of a few 100 µm onto a two-dimensional detector. This approach was applied to three-dimensional valence band structure E(k) and E(r) measurements ("stereography") as functions of photon energy (hν), its polarization (e), detection position (r), and temperature (T). In this study, we described some examples of possible measurement techniques using a soft x-ray PMM. We successfully applied this stereography technique to µm-scale MRPES to selectively visualize the single-domain band structure of twinned face-centered-cubic Ir thin films grown on Al2O3(0001) substrates. The photon energy dependence of the photoelectron intensity on the Au(111) surface state was measured in detail within the bulk Fermi surface. By changing the temperature of 1T-TaS2, we clarified the variations in the valence band dispersion associated with chiral charge-density-wave phase transitions. Finally, PMMs for valence band stereography with various electron analyzers were compared, and the advantages of each were discussed.

5.
Ultramicroscopy ; 253: 113820, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37586245

ABSTRACT

Fermi surfaces of transition metals, which describe all thermodynamical and transport quantities of solids, often fail to be modeled by one-electron mean-field theory due to strong correlations among the valence electrons. In addition, relativistic spin-orbit coupling pronounced in heavier elements lifts the degeneracy of the energy bands and further modifies the Fermi surface. Palladium and rhodium, two 4d metals attributed to show significant spin-orbit coupling and electron correlations, are ideal for a systematic and fundamental study of the two fundamental physical phenomena and their interplay in the electronic structure. In this study, we explored the Fermi surface of the 4d noble metals palladium and rhodium obtained via high-resolution constant initial state momentum microscopy. The complete 3D-Fermi surfaces of palladium and rhodium were tomographically mapped using soft X-ray photon energies from 34 eV up to 660 eV. To fully capture the orbital angular momentum of states across the Fermi surface, the Fermi surface tomography was performed using p- and s- polarized light. Applicability and limitations of the nearly-free electron final state model in photoemission are discussed using a complex band structure model supported by experimental evidence. The significance of spin-orbit coupling and electron correlations across the Fermi surfaces will be discussed within the context of the photoemission results. State-of-the-art fully relativistic Korringa-Kohn-Rostoker (KKR) calculations within the one-step model of photoemission are used to support the experimental results.

6.
Phys Rev E ; 106(5-1): 054138, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36559406

ABSTRACT

The Achlioptas process, a percolation algorithm on random network, shows a rapid second-order phase transition referred to as explosive percolation. To obtain the transition point and critical exponent ß for percolations on a random network, especially for bond percolations, we propose a new scaling analysis that is independent of the system size. The transition point and critical exponent ß are estimated for the product-rule (PR) and da Costa-Dorogovtsev-Goltsev-Mendes (dCDGM) (m=2) models of the Achlioptas process, as well as for the Erdos-Rényi (ER) model, which is a classical model in which the analytic values are known. The validity of the scaling analysis is confirmed, especially for the transition point. The estimations of ß are also consistent with previously reported values for the ER and dCDGM(2) models, whereas the ß estimation for the PR model deviates somewhat. By introducing a parameter representing the maximum cluster size, we develop an extrapolation scheme for the critical exponent ß from the simulation just at the transition point in order to obtain a more accurate value. The estimated value of ß is improved compared with that obtained by the scaling analysis for the ER model and is also consistent with the ß value obtained for the dCDGM(2) model, whereas its deviation from the previously reported value is larger for the PR model. We discuss the accuracy of the present estimations and draw conclusions about their reliability.

7.
Chemistry ; 27(37): 9466-9481, 2021 Jul 02.
Article in English | MEDLINE | ID: mdl-33877732

ABSTRACT

A number of synthetic methodologies and applications of carbon quantum dots (CQDs) have been reported since they were first discovered nearly two decades ago. Unlike metal-based or semiconductor-based (e. g., metal chalcogenides) quantum dots (MSQDs), CQDs have the unique feature of being prepared through a variety of synthetic protocols, which are typically understood from considerations of reaction models and photoluminescence mechanisms. Consequently, this brief review article describes quantum dots, in general, and CQDs, in particular, from various viewpoints: (i) their definition, (ii) their photophysical properties, and (iii) the superiority of CQDs over MSQDs. Where possible, comparisons are made between CQDs and MSQDs. First, however, the review begins with a general brief description of quantum dots (QDs) as nanomaterials (sizes≤10 nm), followed by a short description of MSQDs and CQDs. Described subsequently are the various top-down and bottom-up approaches to synthesize CQDs followed by their distinctive photophysical properties (emission spectra; quantum yields, Φs).

8.
Waste Manag ; 124: 154-159, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33626420

ABSTRACT

Suppression of heavy metal elution from municipal solid waste incineration (MSWI) fly ash by cement or geopolymer solidification was studied. When these approaches are implemented, however, the volume of the solidified body increases as a consequence of the solidifying agent addition. Considering that residual landfill disposal capacity is decreasing in the long term, a novel method to suppress the elution of heavy metals from MSWI fly ash without decreasing the disposal capacity is needed. We studied four different water repellents and the results indicated that heavy metal elution can easily be suppressed by impregnating the incineration fly ash with commercially available silane oligomers, alkyl alkoxysilane compounds, and water repellents like fatty acids.


Subject(s)
Metals, Heavy , Refuse Disposal , Carbon , Coal Ash , Incineration , Metals, Heavy/analysis , Particulate Matter , Solid Waste , Water
9.
RSC Adv ; 10(24): 14396-14402, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-35498445

ABSTRACT

Carbon quantum dots (CQDs; luminescent carbon nanoparticles, size < 10 nm) have attracted much attention with respect to their eco-friendliness and multi-functionality. The solvent-dependent photoluminescence of CQDs has been well investigated to optimize the synthesis process and homogeneous dispersion. Although some alkan-1-ol solvents, such as ethanol, have been well utilized empirically as good solvents when synthesizing highly photoluminescent CQDs, the role of alkan-1-ol solvents, particularly long-chain alkan-1-ols (e.g., 1-nonanol, 1-decanol), has not yet been clarified. Herein, we demonstrate a method for the synthesis of strongly yellow emitting CQDs using solvothermal treatment and elucidate the role of alkan-1-ol solvents in the photoluminescence of CQDs. These CQDs have been characterized using theoretical calculations, ex situ morphological observations using transmission electron microscopy (TEM) and dynamic light scattering (DLS), and 500 MHz 1H nuclear magnetic resonance (NMR) and 13C NMR spectroscopy. A comparative study of alkan-1-ol solvents suggests a mechanism for the agglomeration and aggregation of carbon precursors, intermediates, and CQDs, which is expected to lead to further synthesis studies on highly luminescent CQDs.

10.
Nat Commun ; 10(1): 2298, 2019 05 24.
Article in English | MEDLINE | ID: mdl-31127112

ABSTRACT

The peculiar metallic electronic states observed in the Kondo insulator, samarium hexaboride (SmB6), has stimulated considerable attention among those studying non-trivial electronic phenomena. However, experimental studies of these states have led to controversial conclusions mainly due to the difficulty and inhomogeneity of the SmB6 crystal surface. Here, we show the detailed electronic structure of SmB6 with angle-resolved photoelectron spectroscopy measurements of the three-fold (111) surface where only two inequivalent time-reversal-invariant momenta (TRIM) exist. We observe the metallic two-dimensional state was dispersed across the bulk Kondo gap. Its helical in-plane spin polarisation around the surface TRIM indicates that SmB6 is topologically non-trivial, according to the topological classification theory for weakly correlated systems. Based on these results, we propose a simple picture of the controversial topological classification of SmB6.

11.
Photochem Photobiol Sci ; 18(2): 328-335, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30467574

ABSTRACT

Constraints on light sources that use mercury (arc lamps) are evolving with the establishment of the Minamata Convention, which has led to the proliferation of LEDs. However, no LED light source emits intense ultraviolet radiation at wavelengths below 300 nm for photolytic applications. Thus, it is necessary to develop suitable UV light sources for the decontamination of wastewater and water sterilization processing. Herein, we explore various substitute gases (e.g., N2, Ar, He and SF6) to replace mercury, which is commonly employed in arc lamps, using an EL (electroluminescence) quartz assembly platform similar to microwave-discharge electrodeless lamps. Although nitrogen is an inexpensive and safe gas, it cannot generate significant UV radiation in the UVC region of 200-300 nm. This problem in the Hg-free light source was resolved by mixing a very small quantity of sulfur hexafluoride (SF6) as an additive filler gas in a nitrogen-, argon- or helium-filled assembly. The low-pressure mercury lamp consisting of Hg/Ar filler gases is ca. 25% more efficient than the novel N2/SF6 lamp toward the photolytic decomposition of Rhodamine-B (RhB) dye-contaminated wastewater (1.66 × 10-4 mM min-1versus 1.22 × 10-4 mM min-1). Nonetheless, the latter has proven far more efficient than an LED source emitting 365 nm radiation (0.057 × 10-4 mM min-1). The addition of TiO2 to RhB-contaminated wastewater demonstrated that this Hg-free N2/SF6 light source is as efficient as the corresponding Hg/Ar electroluminescent lamp toward the photocatalytic decomposition of the RhB dye pollutant.

12.
Anal Sci ; 34(11): 1309-1315, 2018 Nov 10.
Article in English | MEDLINE | ID: mdl-30078815

ABSTRACT

A rapid, simple technique combining disk solid-phase extraction and handheld X-ray fluorescence (XRF) spectrometry was developed for the on-site determination of As, Se, and Cr(VI) in drinking water. For the preconcentration of As, Se, and Cr(VI), a 50-mL aqueous sample was adjusted to pH 4, followed by passage through a Ti-loaded anion-exchange disk (Ti-AED). Both sides of the Ti-AED were coated with an adhesive cellophane tape prior to drying using a cordless hair iron, followed by a handheld XRF measurement. The Ti-AED adsorbed As(III), As(V), Se(IV), Se(VI), and Cr(VI) in water without requiring oxidation and reduction. The detection limits of As, Se, and Cr(VI) were all 1.0 µg L-1. Good recoveries were obtained by measuring certified reference materials, and spiking natural mineral water with As, Se, and Cr(VI). As the proposed method does not require a power supply or toxic reagents in any analytical step, it is suitable for the on-site determination of toxic elements in drinking water.


Subject(s)
Arsenic/analysis , Chromium/analysis , Drinking Water/analysis , Selenium/analysis , Water Pollutants, Chemical/analysis , Adsorption , Drinking Water/standards , Ion Exchange , Limit of Detection , Membranes, Artificial , Solid Phase Extraction , Spectrometry, X-Ray Emission , Titanium/chemistry
13.
Nat Commun ; 7: 12690, 2016 08 31.
Article in English | MEDLINE | ID: mdl-27576449

ABSTRACT

A synergistic effect between strong electron correlation and spin-orbit interaction has been theoretically predicted to realize new topological states of quantum matter on Kondo insulators (KIs), so-called topological Kondo insulators (TKIs). One TKI candidate has been experimentally observed on the KI SmB6(001), and the origin of the surface states (SS) and the topological order of SmB6 has been actively discussed. Here, we show a metallic SS on the clean surface of another TKI candidate YbB12(001) using angle-resolved photoelectron spectroscopy. The SS shows temperature-dependent reconstruction corresponding to the Kondo effect observed for bulk states. Despite the low-temperature insulating bulk, the reconstructed SS with c-f hybridization is metallic, forming a closed Fermi contour surrounding on the surface Brillouin zone and agreeing with the theoretically expected behaviour for SS on TKIs. These results demonstrate the temperature-dependent holistic reconstruction of two-dimensional states localized on KIs surface driven by the Kondo effect.

14.
Microbiology (Reading) ; 162(8): 1500-1509, 2016 08.
Article in English | MEDLINE | ID: mdl-27283316

ABSTRACT

The LitR/CarH protein family transcriptional regulator is a new type of photoreceptor based on the function of adenosyl B12 (AdoB12) as a light-sensitive ligand. Here, we studied a semi-conserved histidine residue (His132) in the light-sensing (AdoB12-binding) domain at the C-terminus of LitR from a thermophilic Gram-negative bacterium, Thermus thermophilus HB27. The in vivo mutation of His132 within LitR caused a reduction in the rate of carotenoid production in response to illumination. BIAcore analysis revealed that the illuminated-LitRH132A possesses high DNA-binding activity compared to the wild-type protein. The subunit structure analysis showed that LitRH132A performed an incomplete subunit dissociation. The ability of LitRH132A to associate with AdoB12 was reduced compared with that of the wild-type protein in an equilibration dialysis experiment. Overall, these results suggest that His132 of LitR is involved in the association with AdoB12 as well as the light-sensitive DNA-binding activity based on oligomer dissociation.


Subject(s)
Bacterial Proteins/genetics , DNA-Binding Proteins/genetics , Histidine/genetics , Photoreceptors, Microbial/genetics , Thermus thermophilus/genetics , Thermus thermophilus/physiology , Amino Acid Sequence/genetics , Gene Expression Regulation, Bacterial , Light , Mutation/genetics , Promoter Regions, Genetic/genetics , Sequence Alignment , Transcription, Genetic/genetics
15.
Talanta ; 144: 788-92, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26452891

ABSTRACT

A rapid and simple method was developed for As determination in drinking water by solid-phase extraction (SPE)/mobile X-ray fluorescence (XRF) spectrometry. A 50 mL aqueous sample was adjusted to pH 3 with dilute hydrochloric acid, and then passed through a Ti and Zr-loaded carbon disk (TiZr-CD) to pre-concentrate the As. The SPE disk was adhered to an acrylic plate with cellophane tape, and then examined by mobile XRF spectrometry. The TiZr-CD adsorbed inorganic As (as As(III) and As(V)) and organic As (as methyl, phenyl and aromatic arsenic compounds) from water. The As calibration curve had good linearity over the range of 0.5-5 µg, and the limit of detection was 0.10 µg (2.0 µgL(-1) in As concentration). The concentrations of As in well water samples were determined using the proposed method were similar to results obtained from atomic absorption spectrometry. The proposed method did not require a power supply or a toxic solution and/or gas in any analytical step, therefore it is suitable for the on-site determination of As in drinking water.


Subject(s)
Arsenic/analysis , Arsenic/isolation & purification , Drinking Water/chemistry , Solid Phase Extraction/methods , Spectrometry, X-Ray Emission/methods , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/isolation & purification , Calibration , Desiccation , Hydrogen-Ion Concentration , Limit of Detection , Membranes, Artificial
16.
J Bacteriol ; 197(14): 2301-15, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25917914

ABSTRACT

UNLABELLED: The LitR/CarH family of proteins is a light-sensitive MerR family of transcriptional regulators that contain an adenosyl B12 (coenzyme B12 or AdoB12)-binding domain at the C terminus. The genes encoding these proteins are found in phylogenetically diverse bacterial genera; however, the biochemical properties of these proteins from Gram-positive bacteria remain poorly understood. We performed genetic and biochemical analyses of a homolog of the LitR protein from Bacillus megaterium QM B1551, a Gram-positive endospore-forming soil bacterium. Carotenoid production was induced by illumination in this bacterium. In vivo analysis demonstrated that LitR plays a central role in light-inducible carotenoid production and serves as a negative regulator of the light-inducible transcription of crt and litR itself. Biochemical evidence showed that LitR in complex with AdoB12 binds to the promoter regions of litR and the crt operon in a light-sensitive manner. In vitro transcription experiments demonstrated that AdoB12-LitR inhibited the specific transcription of the crt promoter generated by a σ(A)-containing RNA polymerase holoenzyme under dark conditions. Collectively, these data indicate that the AdoB12-LitR complex serves as a photoreceptor with DNA-binding activity in B. megaterium QM B1551 and that its function as a transcriptional repressor is fundamental to the light-induced carotenoid production. IMPORTANCE: Members of the LitR/CarH family are AdoB12-based photosensors involved in light-inducible carotenoid production in nonphototrophic Gram-negative bacteria. Our study revealed that Bacillus LitR in complex with AdoB12 also serves as a transcriptional regulator with a photosensory function, which indicates that the LitR/CarH family is generally involved in the light-inducible carotenoid production of nonphototrophic bacteria.


Subject(s)
Bacillus megaterium/metabolism , Bacterial Proteins/metabolism , Carotenoids/metabolism , Cobamides/metabolism , Gene Expression Regulation, Bacterial/physiology , Amino Acid Sequence , Bacillus megaterium/genetics , Base Sequence , Binding Sites , Cobamides/chemistry , DNA Footprinting , Deoxyribonuclease I/metabolism , Light , Molecular Sequence Data , Promoter Regions, Genetic , Protein Binding
17.
Talanta ; 134: 739-744, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25618730

ABSTRACT

A rapid and simple method using wavelength-dispersive X-ray fluorescence (WDXRF) spectrometry after in situ solid-phase extraction (SPE) was developed for the speciation and evaluation of the concentration of inorganic arsenic (As) in drinking water. The method involves the simultaneous collection of As(III) and As(V) using 13 mm ϕ SPE miniature disks. The removal of Pb(2+) from the sample water was first conducted to avoid the overlapping PbLα and AsKα spectra on the XRF spectrum. To this end, a 50 mL aqueous sample (pH 5-9) was passed through an iminodiacetate chelating disk. The filtrate was adjusted to pH 2-3 with HCl, and then ammonium pyrrolidine dithiocarbamate solution was added. The solution was passed through a hydrophilic polytetrafluoroethylene filter placed on a Zr and Ca loaded cation-exchange disk at a flow rate of 12.5 mL min(-1) to separate As(III)-pyrrolidine dithiocarbamate complex and As(V). Each SPE disk was affixed to an acrylic plate using adhesive cellophane tape, and then examined by WDXRF spectrometry. The detection limits of As(III) and As(V) were 0.8 and 0.6 µg L(-1), respectively. The proposed method was successfully applied to screening for As speciation and concentration evaluation in spring water and well water.


Subject(s)
Arsenic/analysis , Drinking Water/analysis , Water Pollutants, Chemical/analysis , Arsenic/chemistry , Calcium/chemistry , Chelating Agents/chemistry , Ion Exchange , Lead/chemistry , Polytetrafluoroethylene/chemistry , Solid Phase Extraction , Spectrometry, X-Ray Emission , Water Pollutants, Chemical/chemistry , Zirconium/chemistry
18.
Phys Rev Lett ; 115(25): 256404, 2015 Dec 18.
Article in English | MEDLINE | ID: mdl-26722934

ABSTRACT

A 1D metallic surface state was created on an anisotropic InSb(001) surface covered with Bi. Angle-resolved photoelectron spectroscopy (ARPES) showed a 1D Fermi contour with almost no 2D distortion. Close to the Fermi level (E_{F}), the angle-integrated photoelectron spectra showed power-law scaling with the binding energy and temperature. The ARPES plot above E_{F}, obtained thanks to a thermally broadened Fermi edge at room temperature, showed a 1D state with continuous metallic dispersion across E_{F} and power-law intensity suppression around E_{F}. These results strongly suggest a Tomonaga-Luttinger liquid on the Bi/InSb(001) surface.


Subject(s)
Antimony/chemistry , Bismuth/chemistry , Indium/chemistry , Models, Chemical , Alloys/chemistry , Anisotropy , Photoelectron Spectroscopy
19.
Mol Biosyst ; 11(1): 71-6, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25325213

ABSTRACT

We successfully generated chimeric DNA aptamers that contained six nucleoside analogs of 2'-O,4'-C-methylene bridged/locked nucleic acid (2',4'-BNA/LNA) in the primer region and multiple guanosine analogs of 2'-deoxy-2'-fluoro-ribonucleic acid (FNA) in the non-primer region using capillary electrophoresis-systematic evolution of ligands by exponential enrichment (CE-SELEX). Active species enrichment became saturated only after five selection rounds, and we obtained DNA-based xeno-nucleic acid (XNA) aptamers that had high binding affinities for the target human thrombin, with dissociation constant (Kd) values of ≥10 nanomolar. Based on sequence and circular dichroism (CD) analyses, these XNA aptamers exhibited RNA-like conformations, which could cause DNA-based strands to adopt structurally diverse conformations.


Subject(s)
Aptamers, Nucleotide/chemistry , Gene Library , Nucleic Acids/chemistry , Oligonucleotides/chemistry , RNA/chemistry , SELEX Aptamer Technique , Aptamers, Nucleotide/genetics , Aptamers, Nucleotide/pharmacokinetics , Binding Sites , Humans , Kinetics , Nucleic Acid Conformation , Nucleic Acids/genetics , Oligonucleotides/genetics , Protein Binding , Structure-Activity Relationship , Thrombin/metabolism
20.
Appl Microbiol Biotechnol ; 99(5): 2329-37, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25547841

ABSTRACT

Cobalamin (Cbl) (synonym, vitamin B12) is the cobalt-containing cofactor produced only by some prokaryotes. Streptomyces is an effective Cbl producer. To study the role of Cbl production in Streptomyces, a knockout mutant for Cbl biosynthesis (cob) was generated in Streptomyces coelicolor A3 (2). The growth of the mutant was similar to that of the wild type in a rich medium, but inhibited in minimal medium, suggesting the involvement of Cbl in some step of primary metabolism. Methionine synthesis catalyzed by MetH, the Cbl-dependent methionine synthase, is a candidate. However, supplementing the minimal medium with methionine did not rescue the growth of the cob mutant, indicating that the availability of Cbl affects another primary function. Transcriptional analysis confirmed that the mutant induced metE encoding an alternative Cbl-independent methionine synthase, probably due to the Cbl-dependent riboswitch mechanism. The cob mutant produced low levels of pigment antibiotics and formed fewer aerial mycelium and spores in a rich medium, suggesting that a Cbl-dependent mechanism controls development. A similar developmental defect was observed for a knockout mutant for SCO4800, encoding the putative Cbl-dependent isobutyryl-CoA mutase (Icm) small subunit. Since the knockout of the Icm large subunit (SCO5415) did not affect the developmental phenotype, SCO4800 likely regulates development independently from SCO5415. Effective Cbl production is fundamental to the diverse functions underlying the complex developmental life cycle of S. coelicolor A3 (2).


Subject(s)
Gene Expression Regulation, Fungal , Streptomyces coelicolor/growth & development , Streptomyces coelicolor/metabolism , Vitamin B 12/biosynthesis , Culture Media/chemistry , Gene Expression Profiling , Gene Knockout Techniques , Streptomyces coelicolor/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...