Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Artif Intell ; 6: 1235231, 2023.
Article in English | MEDLINE | ID: mdl-38116389

ABSTRACT

We explore the emergence of symbols during interactions between individuals through an experimental semiotic study. Previous studies have investigated how humans organize symbol systems through communication using artificially designed subjective experiments. In this study, we focused on a joint-attention-naming game (JA-NG) in which participants independently categorized objects and assigned names while assuming their joint attention. In the Metropolis-Hastings naming game (MHNG) theory, listeners accept provided names according to the acceptance probability computed using the Metropolis-Hastings (MH) algorithm. The MHNG theory suggests that symbols emerge as an approximate decentralized Bayesian inference of signs, which is represented as a shared prior variable if the conditions of the MHNG are satisfied. This study examines whether human participants exhibit behavior consistent with the MHNG theory when playing the JA-NG. By comparing human acceptance decisions of a partner's naming with acceptance probabilities computed in the MHNG, we tested whether human behavior is consistent with the MHNG theory. The main contributions of this study are twofold. First, we reject the null hypothesis that humans make acceptance judgments with a constant probability, regardless of the acceptance probability calculated by the MH algorithm. The results of this study show that the model with acceptance probability computed by the MH algorithm predicts human behavior significantly better than the model with a constant probability of acceptance. Second, the MH-based model predicted human acceptance/rejection behavior more accurately than four other models (i.e., Constant, Numerator, Subtraction, Binary). Among the models compared, the model using the MH algorithm, which is the only model with the mathematical support of decentralized Bayesian inference, predicted human behavior most accurately, suggesting that symbol emergence in the JA-NG can be explained by the MHNG.

2.
Front Artif Intell ; 6: 1229127, 2023.
Article in English | MEDLINE | ID: mdl-37920571

ABSTRACT

In the studies on symbol emergence and emergent communication in a population of agents, a computational model was employed in which agents participate in various language games. Among these, the Metropolis-Hastings naming game (MHNG) possesses a notable mathematical property: symbol emergence through MHNG is proven to be a decentralized Bayesian inference of representations shared by the agents. However, the previously proposed MHNG is limited to a two-agent scenario. This paper extends MHNG to an N-agent scenario. The main contributions of this paper are twofold: (1) we propose the recursive Metropolis-Hastings naming game (RMHNG) as an N-agent version of MHNG and demonstrate that RMHNG is an approximate Bayesian inference method for the posterior distribution over a latent variable shared by agents, similar to MHNG; and (2) we empirically evaluate the performance of RMHNG on synthetic and real image data, i.e., YCB object dataset, enabling multiple agents to develop and share a symbol system. Furthermore, we introduce two types of approximations-one-sample and limited-length-to reduce computational complexity while maintaining the ability to explain communication in a population of agents. The experimental findings showcased the efficacy of RMHNG as a decentralized Bayesian inference for approximating the posterior distribution concerning latent variables, which are jointly shared among agents, akin to MHNG, although the improvement in ARI and κ coefficient is smaller in the real image dataset condition. Moreover, the utilization of RMHNG elucidated the agents' capacity to exchange symbols. Furthermore, the study discovered that even the computationally simplified version of RMHNG could enable symbols to emerge among the agents.

3.
Front Robot AI ; 10: 1290604, 2023.
Article in English | MEDLINE | ID: mdl-38356917

ABSTRACT

Deep generative models (DGM) are increasingly employed in emergent communication systems. However, their application in multimodal data contexts is limited. This study proposes a novel model that combines multimodal DGM with the Metropolis-Hastings (MH) naming game, enabling two agents to focus jointly on a shared subject and develop common vocabularies. The model proves that it can handle multimodal data, even in cases of missing modalities. Integrating the MH naming game with multimodal variational autoencoders (VAE) allows agents to form perceptual categories and exchange signs within multimodal contexts. Moreover, fine-tuning the weight ratio to favor a modality that the model could learn and categorize more readily improved communication. Our evaluation of three multimodal approaches - mixture-of-experts (MoE), product-of-experts (PoE), and mixture-of-product-of-experts (MoPoE)-suggests an impact on the creation of latent spaces, the internal representations of agents. Our results from experiments with the MNIST + SVHN and Multimodal165 datasets indicate that combining the Gaussian mixture model (GMM), PoE multimodal VAE, and MH naming game substantially improved information sharing, knowledge formation, and data reconstruction.

4.
Front Robot AI ; 6: 31, 2019.
Article in English | MEDLINE | ID: mdl-33501047

ABSTRACT

An autonomous robot performing tasks in a human environment needs to recognize semantic information about places. Semantic mapping is a task in which suitable semantic information is assigned to an environmental map so that a robot can communicate with people and appropriately perform tasks requested by its users. We propose a novel statistical semantic mapping method called SpCoMapping, which integrates probabilistic spatial concept acquisition based on multimodal sensor information and a Markov random field applied for learning the arbitrary shape of a place on a map.SpCoMapping can connect multiple words to a place in a semantic mapping process using user utterances without pre-setting the list of place names. We also develop a nonparametric Bayesian extension of SpCoMapping that can automatically estimate an adequate number of categories. In the experiment in the simulation environments, we showed that the proposed method generated better semantic maps than previous semantic mapping methods; our semantic maps have categories and shapes similar to the ground truth provided by the user. In addition, we showed that SpCoMapping could generate appropriate semantic maps in a real-world environment.

5.
Front Robot AI ; 6: 134, 2019.
Article in English | MEDLINE | ID: mdl-33501149

ABSTRACT

This study focuses on category formation for individual agents and the dynamics of symbol emergence in a multi-agent system through semiotic communication. In this study, the semiotic communication refers to exchanging signs composed of the signifier (i.e., words) and the signified (i.e., categories). We define the generation and interpretation of signs associated with the categories formed through the agent's own sensory experience or by exchanging signs with other agents as basic functions of the semiotic communication. From the viewpoint of language evolution and symbol emergence, organization of a symbol system in a multi-agent system (i.e., agent society) is considered as a bottom-up and dynamic process, where individual agents share the meaning of signs and categorize sensory experience. A constructive computational model can explain the mutual dependency of the two processes and has mathematical support that guarantees a symbol system's emergence and sharing within the multi-agent system. In this paper, we describe a new computational model that represents symbol emergence in a two-agent system based on a probabilistic generative model for multimodal categorization. It models semiotic communication via a probabilistic rejection based on the receiver's own belief. We have found that the dynamics by which cognitively independent agents create a symbol system through their semiotic communication can be regarded as the inference process of a hidden variable in an interpersonal multimodal categorizer, i.e., the complete system can be regarded as a single agent performing multimodal categorization using the sensors of all agents, if we define the rejection probability based on the Metropolis-Hastings algorithm. The validity of the proposed model and algorithm for symbol emergence, i.e., forming and sharing signs and categories, is also verified in an experiment with two agents observing daily objects in the real-world environment. In the experiment, we compared three communication algorithms: no communication, no rejection, and the proposed algorithm. The experimental results demonstrate that our model reproduces the phenomena of symbol emergence, which does not require a teacher who would know a pre-existing symbol system. Instead, the multi-agent system can form and use a symbol system without having pre-existing categories.

6.
Front Robot AI ; 6: 144, 2019.
Article in English | MEDLINE | ID: mdl-33501159

ABSTRACT

This paper describes a new method that enables a service robot to understand spoken commands in a robust manner using off-the-shelf automatic speech recognition (ASR) systems and an encoder-decoder neural network with noise injection. In numerous instances, the understanding of spoken commands in the area of service robotics is modeled as a mapping of speech signals to a sequence of commands that can be understood and performed by a robot. In a conventional approach, speech signals are recognized, and semantic parsing is applied to infer the command sequence from the utterance. However, if errors occur during the process of speech recognition, a conventional semantic parsing method cannot be appropriately applied because most natural language processing methods do not recognize such errors. We propose the use of encoder-decoder neural networks, e.g., sequence to sequence, with noise injection. The noise is injected into phoneme sequences during the training phase of encoder-decoder neural network-based semantic parsing systems. We demonstrate that the use of neural networks with a noise injection can mitigate the negative effects of speech recognition errors in understanding robot-directed speech commands i.e., increase the performance of semantic parsing. We implemented the method and evaluated it using the commands given during a general purpose service robot (GPSR) task, such as a task applied in RoboCup@Home, which is a standard service robot competition for the testing of service robots. The results of the experiment show that the proposed method, namely, sequence to sequence with noise injection (Seq2Seq-NI), outperforms the baseline methods. In addition, Seq2Seq-NI enables a robot to understand a spoken command even when the speech recognition by an off-the-shelf ASR system contains recognition errors. Moreover, in this paper we describe an experiment conducted to evaluate the influence of the injected noise and provide a discussion of the results.

7.
Front Neurorobot ; 12: 11, 2018.
Article in English | MEDLINE | ID: mdl-29593521

ABSTRACT

In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., "I am in my home" and "I am in front of the table," a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object recognition results using convolutional neural network (CNN), hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL), and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.

SELECTION OF CITATIONS
SEARCH DETAIL
...