Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 8395, 2024 04 10.
Article in English | MEDLINE | ID: mdl-38600099

ABSTRACT

The aim of the present study was to investigate retinal microcirculatory and functional metabolic changes in patients after they had recovered from a moderate to severe acute COVID-19 infection. Retinal perfusion was quantified using laser speckle flowgraphy. Oxygen saturation and retinal calibers were assessed with a dynamic vessel analyzer. Arterio-venous ratio (AVR) was calculated based on retinal vessel diameter data. Blood plasma samples underwent mass spectrometry-based multi-omics profiling, including proteomics, metabolomics and eicosadomics. A total of 40 subjects were included in the present study, of which 29 had recovered from moderate to severe COVID-19 within 2 to 23 weeks before inclusion and 11 had never had COVID-19, as confirmed by antibody testing. Perfusion in retinal vessels was significantly lower in patients (60.6 ± 16.0 a.u.) than in control subjects (76.2 ± 12.1 a.u., p = 0.006). Arterio-venous (AV) difference in oxygen saturation and AVR was significantly lower in patients compared to healthy controls (p = 0.021 for AVR and p = 0.023 for AV difference in oxygen saturation). Molecular profiles demonstrated down-regulation of cell adhesion molecules, NOTCH3 and fatty acids, and suggested a bisphasic dysregulation of nitric oxide synthesis after COVID-19 infection. The results of this study imply that retinal perfusion and oxygen metabolism is still significantly altered in patients well beyond the acute phase of COVID-19. This is also reflected in the molecular profiling analysis of blood plasma, indicating a down-regulation of nitric oxide-related endothelial and immunological cell functions.Trial Registration: ClinicalTrials.gov ( https://clinicaltrials.gov ) NCT05650905.


Subject(s)
COVID-19 , Oxygen , Humans , Oxygen/metabolism , Microcirculation , Nitric Oxide , Oximetry/methods , Retinal Vessels , Perfusion , Blood Proteins , Lipids
2.
J Proteome Res ; 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520676

ABSTRACT

Metabolomics is an emerging and powerful bioanalytical method supporting clinical investigations. Serum and plasma are commonly used without rational prioritization. Serum is collected after blood coagulation, a complex biochemical process involving active platelet metabolism. This may affect the metabolome and increase the variance, as platelet counts and function may vary substantially in individuals. A multiomics approach systematically investigating the suitability of serum and plasma for clinical studies demonstrated that metabolites correlated well (n = 461, R2 = 0.991), whereas lipid mediators (n = 83, R2 = 0.906) and proteins (n = 322, R2 = 0.860) differed substantially between specimen. Independently, analysis of platelet releasates identified most biomolecules significantly enriched in serum compared to plasma. A prospective, randomized, controlled parallel group metabolomics trial with acetylsalicylic acid administered for 7 days demonstrated that the apparent drug effects significantly differ depending on the analyzed specimen. Only serum analyses of healthy individuals suggested a significant downregulation of TXB2 and 12-HETE, which were specifically formed during coagulation in vitro. Plasma analyses reliably identified acetylsalicylic acid effects on metabolites and lipids occurring in vivo such as an increase in serotonin, 15-deoxy-PGJ2 and sphingosine-1-phosphate and a decrease in polyunsaturated fatty acids. The present data suggest that plasma should be preferred above serum for clinical metabolomics studies as the serum metabolome may be substantially confounded by platelets.

3.
Heliyon ; 9(9): e20197, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37809523

ABSTRACT

Orchidaceae are diverse plants whose bioactive compounds have various biological activities. New hybrids of Dendrobium have been generated to gain characteristics shared with their ancestors. Dendrobium Pearl Vera (designated as DH) is derived from parents used for dermatological treatments and cosmetics. However, the phytoconstituents and biological properties of DH have not been reported. The current study investigated extracts from DH plants using four solvents (water, methanol, ethanol, or 2-propanol). The propanolic extract (DH-P) contained the highest phenolic and flavonoid contents, along with a high scavenging performance for free radicals. In total, 25 tentative constituents in the DH-P matrix were identified, consisting of amino acids, nucleotides, and three types of secondary metabolites: furan, phenolics, and alkaloids. The DH-P inhibited human tyrosinase in vitro in a concentration-dependent manner of the phenolic content. Furthermore, there was no significant difference between DH-P with 10 µg/ml phenolic content and 0.75 mM kojic acid (a commercial whitening agent) on the inhibition of human tyrosinase. Incubation with DH-P containing at least 15 µg/ml phenolic content greatly inhibited the proliferation of human melanoma; however, the cell viability was not affected by the phenolic content at 5 µg/ml or less. The half-maximal inhibitory concentration (IC50) of the phenolic content in DH-P on melanoma viability was 12.90 ± 1.04 µg/ml. Melanin production in vivo by human melanoma incubated with 5 µg/ml phenolic content in DH-P was reduced significantly, compared to 2.5 µg/ml phenolic content in DH-P, 100 µg/ml arbutin, and in control. The identified components, including 5-hydroxymethyl-2-furaldehyde, salicylic acid, nicotinamide, acetophenone, cytidine, adenosine, proline, or valine, have been reported to be associated with depigmentation, antioxidant, and anticancer. This research revealed, for the first time, the tentative phytoconstituents of Dendrobium Pearl Vera and their biological activities, thus demonstrating the potential use of DH-P in dermal applications.

4.
Front Physiol ; 14: 1164926, 2023.
Article in English | MEDLINE | ID: mdl-37008004

ABSTRACT

Introduction: Eicosanoids are bioactive lipids present in packed red blood cells (PRBCs), and might play a role in transfusion-related immunomodulation (TRIM). We tested the feasibility of analyzing eicosanoid profiles in PRBC supernatant and in plasma samples of postoperative intensive care unit (ICU) patients transfused with one unit of PRBCs. Methods: We conducted a prospective, observational feasibility study enrolling postoperative ICU patients: 1) patients treated with acetylsalicylic acid following abdominal aortic surgery (Aorta); 2) patients on immunosuppressants after bilateral lung transplantation (LuTx); and 3) patients undergoing other types of major surgery (Comparison). Abundances of arachidonic acid (AA) and seven pre-defined eicosanoids were assessed by liquid chromatography and tandem mass spectrometry. PRBC supernatant was sampled directly from the unit immediately prior to transfusion. Spearman's correlations between eicosanoid abundance in PRBCs and storage duration were assessed. Patient plasma was collected at 30-min intervals: Three times each before and after transfusion. To investigate temporal changes in eicosanoid abundances, we fitted linear mixed models. Results: Of 128 patients screened, 21 were included in the final analysis (Aorta n = 4, LuTx n = 8, Comparison n = 9). In total, 21 PRBC and 125 plasma samples were analyzed. Except for 20-hydroxyeicosatetraenoic acid (HETE), all analyzed eicosanoids were detectable in PRBCs, and their abundance positively correlated with storage duration of PRBCs. While 5-HETE, 12-HETE/8-HETE, 15-HETE, 20-HETE, and AA were detectable in virtually all plasma samples, 9-HETE and 11-HETE were detectable in only 57% and 23% of plasma samples, respectively. Conclusions: Recruitment of ICU patients into this transfusion study was challenging but feasible. Eicosanoid abundances increased in PRBC supernatants during storage. In plasma of ICU patients, eicosanoid abundances were ubiquitously detectable and showed limited fluctuations over time prior to transfusion. Taken together, larger clinical studies seem warranted and feasible to further investigate the role of PRBC-derived eicosanoids in TRIM.

5.
J Crohns Colitis ; 17(9): 1514-1527, 2023 Oct 20.
Article in English | MEDLINE | ID: mdl-36961872

ABSTRACT

INTRODUCTION: Ulcerative colitis [UC] is a chronic disease with rising incidence and unclear aetiology. Deep molecular phenotyping by multiomics analyses may provide novel insights into disease processes and characteristic features of remission states. METHODS: UC pathomechanisms were assessed by proteome profiling of human tissue specimens, obtained from five distinct colon locations for each of the 12 patients included in the study. Systemic disease-associated alterations were evaluated thanks to a cross-sectional setting of mass spectrometry-based multiomics analyses comprising proteins, metabolites, and eicosanoids of plasma obtained from UC patients during acute episodes and upon remission, in comparison with healthy controls. RESULTS: Tissue proteome profiling indicated colitis-associated activation of neutrophils, macrophages, B and T cells, fibroblasts, endothelial cells and platelets, and hypoxic stress, and suggested a general downregulation of mitochondrial proteins accompanying the establishment of apparent wound healing-promoting activities including scar formation. Whereas pro-inflammatory proteins were apparently upregulated by immune cells, the colitis-associated epithelial cells, fibroblasts, endothelial cells, and platelets seemed to predominantly contribute anti-inflammatory and wound healing-promoting proteins. Blood plasma proteomics indicated chronic inflammation and platelet activation, whereas plasma metabolomics identified disease-associated deregulations of gut and gut microbiome-derived metabolites. Upon remission several, but not all, molecular candidate biomarker levels recovered back to normal. CONCLUSION: The findings may indicate that microvascular damage and platelet deregulation hardly resolve upon remission, but apparently persist as disease-associated molecular signatures. This study presents local and systemic molecular alterations integrated in a model for UC pathomechanisms, potentially supporting the assessment of disease and remission states in UC patients.

6.
ESC Heart Fail ; 10(1): 311-321, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36217578

ABSTRACT

AIMS: Secondary, or functional, mitral regurgitation (FMR) was recently recognized as a separate clinical entity, complicating heart failure with reduced ejection fraction (HFrEF) and entailing particularly poor outcome. Currently, there is a lack of targeted therapies for FMR due to the fact that pathomechanisms leading to FMR progression are incompletely understood. In this study, we sought to perform metabolomic profiling of HFrEF patients with severe FMR, comparing results to patients with no or mild FMR. METHODS AND RESULTS: Targeted plasma metabolomics and untargeted eicosanoid analyses were performed in samples drawn from HFrEF patients (n = 80) on optimal guideline-directed medical therapy. Specifically, 17 eicosanoids and 188 metabolites were analysed. Forty-seven patients (58.8%) had severe FMR, and 33 patients (41.2%) had no or non-severe FMR. Comparison of eicosanoid levels between groups, accounting for age, body mass index, and sex, revealed significant up-regulation of six eicosanoids (11,12-EET, 13(R)-HODE, 12(S)-HETE, 8,9-DiHETrE, metPGJ2, and 20-HDoHE) in severe FMR patients. Metabolites did not differ significantly. In patients with severe FMR, but not in those without severe FMR, levels of 8,9-DiHETrE above a cut-off specified by receiver-operating characteristic analysis independently predicted all-cause mortality after a median follow-up of 43 [interquartile range 38, 48] months [hazard ratio 12.488 (95% confidence interval 3.835-40.666), P < 0.0001]. CONCLUSIONS: We report the up-regulation of various eicosanoids in patients with severe FMR, with 8,9-DiHETrE appearing to predict mortality. Our observations may serve as a nucleus for further investigations into the causes and consequences of metabolic derangements in this important valvular abnormality.


Subject(s)
Heart Failure , Mitral Valve Insufficiency , Humans , Mitral Valve Insufficiency/etiology , Prognosis , Stroke Volume/physiology
7.
iScience ; 26(1): 105717, 2023 Jan 20.
Article in English | MEDLINE | ID: mdl-36507225

ABSTRACT

To investigate long COVID-19 syndrome (LCS) pathophysiology, we performed an exploratory study with blood plasma derived from three groups: 1) healthy vaccinated individuals without SARS-CoV-2 exposure; 2) asymptomatic recovered patients at least three months after SARS-CoV-2 infection and; 3) symptomatic patients at least 3 months after SARS-CoV-2 infection with chronic fatigue syndrome or similar symptoms, here designated as patients with long COVID-19 syndrome (LCS). Multiplex cytokine profiling indicated slightly elevated pro-inflammatory cytokine levels in recovered individuals in contrast to patients with LCS. Plasma proteomics demonstrated low levels of acute phase proteins and macrophage-derived secreted proteins in LCS. High levels of anti-inflammatory oxylipins including omega-3 fatty acids in LCS were detected by eicosadomics, whereas targeted metabolic profiling indicated high levels of anti-inflammatory osmolytes taurine and hypaphorine, but low amino acid and triglyceride levels and deregulated acylcarnitines. A model considering alternatively polarized macrophages as a major contributor to these molecular alterations is presented.

8.
Biomolecules ; 12(9)2022 09 07.
Article in English | MEDLINE | ID: mdl-36139096

ABSTRACT

Pathogen inactivation techniques for blood products have been implemented to optimize clinically safe blood components supply. The INTERCEPT system uses amotosalen together with ultraviolet light wavelength A (UVA) irradiation. Irradiation-induced inactivation of nucleic acids may actually be accompanied by modifications of chemically reactive polyunsaturated fatty acids known to be important mediators of platelet functions. Thus, here, we investigated eicosanoids and the related fatty acids released upon treatment and during storage of platelet concentrates for 7 days, complemented by the analysis of functional and metabolic consequences of these treatments. Metabolic and functional issues like glucose consumption, lactate formation, platelet aggregation, and clot firmness hardly differed between the two treatment groups. In contrast to gamma irradiation, here, we demonstrated that INTERCEPT treatment immediately caused new formation of trans-arachidonic acid isoforms, while 11-hydroxyeicosatetraenoic acid (11-HETE) and 15-HETE were increased and two hydroperoxyoctadecadienoic acid (HpODE) isoforms decreased. During further storage, these alterations remained stable, while the release of 12-lipoxygenase (12-LOX) products such as 12-HETE and 12-hydroxyeicosapentaenoic acid (12-HEPE) was further attenuated. In vitro synthesis of trans-arachidonic acid isoforms suggested that thiol radicals formed by UVA treatment may be responsible for the INTERCEPT-specific effects observed in platelet concentrates. It is reasonable to assume that UVA-induced molecules may have specific biological effects which need to be further investigated.


Subject(s)
Arachidonic Acids , Nucleic Acids , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/metabolism , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/pharmacology , Arachidonate 12-Lipoxygenase/metabolism , Arachidonic Acid/metabolism , Arachidonic Acid/pharmacology , Arachidonic Acids/metabolism , Blood Platelets , Glucose/metabolism , Hydroxyeicosatetraenoic Acids/metabolism , Hydroxyeicosatetraenoic Acids/pharmacology , Lactates/metabolism , Nucleic Acids/metabolism , Sulfhydryl Compounds/metabolism
9.
EPMA J ; 13(1): 107-123, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35265228

ABSTRACT

Background/aims: Concerning healthcare approaches, a paradigm change from reactive medicine to predictive approaches, targeted prevention, and personalisation of medical services is highly desirable. This raises demand for biomarker signatures that support the prediction and diagnosis of diseases, as well as monitoring strategies regarding therapeutic efficacy and supporting individualised treatments. New methodological developments should preferably rely on non-invasively sampled biofluids like sweat and tears in order to provide optimal compliance, reduce costs, and ensure availability of the biomaterial. Here, we have thus investigated the metabolic composition of human tears in comparison to finger sweat in order to find biofluid-specific marker molecules derived from distinct secretory glands. The comprehensive investigation of numerous biofluids may lead to the identification of novel biomarker signatures. Moreover, tear fluid analysis may not only provide insight into eye pathologies but may also be relevant for the prediction and monitoring of disease progression and/ or treatment of systemic disorders such as type 2 diabetes mellitus. Methods: Sweat and tear fluid were sampled from 20 healthy volunteers using filter paper and commercially available Schirmer strips, respectively. Finger sweat analysis has already been successfully established in our laboratory. In this study, we set up and evaluated methods for tear fluid extraction and analysis using high-resolution mass spectrometry hyphenated with liquid chromatography, using optimised gradients each for metabolites and eicosanoids. Sweat and tears were systematically compared using statistical analysis. As second approach, we performed a clinical pilot study with 8 diabetic patients and compared them to 19 healthy subjects. Results: Tear fluid was found to be a rich source for metabolic phenotyping. Remarkably, several molecules previously identified by us in sweat were found significantly enriched in tear fluid, including creatine or taurine. Furthermore, other metabolites such as kahweol and various eicosanoids were exclusively detectable in tears, demonstrating the orthogonal power for biofluid analysis in order to gain information on individual health states. The clinical pilot study revealed that many endogenous metabolites that have previously been linked to type 2 diabetes such as carnitine, tyrosine, uric acid, and valine were indeed found significantly up-regulated in tears of diabetic patients. Nicotinic acid and taurine were elevated in the diabetic cohort as well and may represent new biomarkers for diabetes specifically identified in tear fluid. Additionally, systemic medications, like metformin, bisoprolol, and gabapentin, were readily detectable in tears of patients. Conclusions: The high number of identified marker molecules found in tear fluid apparently supports disease development prediction, developing preventive approaches as well as tailoring individual patients' treatments and monitoring treatment efficacy. Tear fluid analysis may also support pharmacokinetic studies and patient compliance control. Supplementary Information: The online version contains supplementary material available at 10.1007/s13167-022-00272-7.

10.
Biomolecules ; 11(8)2021 08 17.
Article in English | MEDLINE | ID: mdl-34439896

ABSTRACT

Endometriosis is a benign disease affecting one in ten women of reproductive age worldwide. Although the pain level is not correlated to the extent of the disease, it is still one of the cardinal symptoms strongly affecting the patients' quality of life. Yet, a molecular mechanism of this pathology, including the formation of pain, remains to be defined. Recent studies have indicated a close interaction between newly generated nerve cells and macrophages, leading to neurogenic inflammation in the pelvic area. In this context, the responsiveness of an endometriotic cell culture model was characterized upon inflammatory stimulation by employing a multi-omics approach, including proteomics, metabolomics and eicosanoid analysis. Differential proteomic profiling of the 12-Z endometriotic cell line treated with TNFα and IL1ß unexpectedly showed that the inflammatory stimulation was able to induce a protein signature associated with neuroangiogenesis, specifically including neuropilins (NRP1/2). Untargeted metabolomic profiling in the same setup further revealed that the endometriotic cells were capable of the autonomous production of 7,8-dihydrobiopterin (BH2), 7,8-dihydroneopterin, normetanephrine and epinephrine. These metabolites are related to the development of neuropathic pain and the former three were found up-regulated upon inflammatory stimulation. Additionally, 12-Z cells were found to secrete the mono-oxygenated oxylipin 16-HETE, a known inhibitor of neutrophil aggregation and adhesion. Thus, inflammatory stimulation of endometriotic 12-Z cells led to specific protein and metabolite expression changes suggesting a direct involvement of these epithelial-like cells in endometriosis pain development.


Subject(s)
Cell Line , Endometriosis/metabolism , Epithelial Cells/metabolism , Macrophages/metabolism , Neurons/metabolism , Pain/metabolism , Cell Culture Techniques , Cell Cycle , Eicosanoids/chemistry , Female , Humans , Inflammation , Metabolome , Metabolomics , Phenotype , Proteome , Proteomics/methods , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...