Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem J ; 347 Pt 1: 69-75, 2000 Apr 01.
Article in English | MEDLINE | ID: mdl-10727403

ABSTRACT

In the biosynthesis of heparin and heparan sulphate, D-glucuronic acid residues are converted into L-iduronic acid (IdoA) units by C-5 epimerization, at the polymer level. The reaction catalysed by the epimerase occurs by reversible abstraction and readdition of a proton at C-5 of target hexuronic acid residues, through a carbanion intermediate, with or without an inversion of configuration at C-5 [Prihar, Campbell, Feingold, Jacobsson, Jensen, Lindahl and Rodén (1980) Biochemistry 19, 495-500]. Incubation of chemically N-sulphated capsular polysaccharide from Escherichia coli K5 ([4GlcAbeta1-4GlcNSO(3)alpha1-](n)), or of O-desulphated heparin (predominantly [4IdoAalpha1-4GlcNSO(3)alpha1-](n)) with purified C-5 epimerase from bovine liver, resulted in the interconversion of glucuronic acid and IdoA residues, which reached equilibrium (30-40% IdoA/total hexuronic acid) after approx. 1 h of incubation. Similar incubations performed in the presence of (3)H(2)O resulted in progressive labelling at C-5 of the target hexuronic acid units of either substrate polysaccharide. Contrary to chemical D-gluco/L-ido equilibrium, established within 1 h of incubation, the accumulation of (3)H label continued for at least 6 h. This isotope effect suggests that the second stage of the reaction, i.e. the re-addition of a proton to the carbanion intermediate, is the rate-limiting step of the overall process. Analysis of the 5-(3)H-labelled polysaccharide products showed that the (3)H was approximately equally distributed between glucuronic acid and IdoA units, irrespective of incubation time (from 15 min to 72 h) and of the relative proportions of the two epimers in the substrate. This finding points to a catalytic mechanism in which the abstraction and re-addition of C-5 protons are effected by two polyprotic bases, presumably lysine residues. Previous experiments relating to the biosynthesis of dermatan sulphate were similarly interpreted in terms of a two-base epimerization mechanism but differed from the present findings by implicating one monoprotic and one polyprotic base function [Hannesson, Hagner-McWhirter, Tiedemann, Lindahl and Malmström (1996) Biochem. J. 313, 589-596].


Subject(s)
Carbohydrate Epimerases/metabolism , Glucuronic Acid/metabolism , Heparin/biosynthesis , Heparitin Sulfate/biosynthesis , Iduronic Acid/metabolism , Liver/enzymology , Polysaccharides, Bacterial/metabolism , Animals , Cattle , Escherichia coli , Heparin/chemistry , Heparitin Sulfate/chemistry , Kinetics , Polysaccharides, Bacterial/chemistry
2.
Glycobiology ; 10(2): 159-71, 2000 Feb.
Article in English | MEDLINE | ID: mdl-10642607

ABSTRACT

The D-glucuronyl C5-epimerase involved in the biosynthesis of heparin and heparan sulfate was investigated with focus on its substrate specificity, its kinetic properties, and a comparison of epimerase preparations from the Furth mastocytoma and bovine liver, which synthesize heparin and heparan sulfate, respectively. New substrates for the epimerase were prepared from the capsular polysaccharide of Escherichia coli K5, which had been labeled at C5 of its D-glucuronic and N-acetyl-D-glucosamine moieties by growing the bacteria in the presence of D-[5-(3)H]glucose. Following complete or partial ( approximately 50%) N-deacetylation of the polysaccharide by hydrazinolysis, the free amino groups were sulfated by treatment with trimethylamine.SO(3)complex, which yielded products that were recognized as substrates by the epimerase and released tritium from C5 of the D-glucuronyl residues upon incubation with the enzyme. Comparison of the kinetic properties of the two substrates showed that the fully N-sulfated derivative was the best substrate in terms of its K(m)value, which was significantly lower than that of its partially N-acetylated counterpart. The V(max)values for the E.coli polysaccharide derivatives were essentially the same but were both lower than that of the O-desulfated [(3)H]heparin used in our previous studies. Surprisingly, the apparent K(m)values for all three substrates increased with increasing enzyme concentration. The reason for this phenomenon is not entirely clear at present. Partially purified C5-epimerase preparations from the Furth mastocytoma and bovine liver, respectively, behaved similarly in terms of their reactivity towards the various substrates, but the variation in apparent K(m)values with enzyme concentration precluded a detailed comparison of their kinetic properties.


Subject(s)
Carbohydrate Epimerases/metabolism , Escherichia coli/metabolism , Heparin/biosynthesis , Heparitin Sulfate/metabolism , Polysaccharides/metabolism , Animals , Carbon Radioisotopes , Cattle , Escherichia coli/immunology , Glucose/metabolism , Kinetics , Liver/enzymology , Mast-Cell Sarcoma/enzymology , Mice , Muscle Neoplasms/enzymology , Polysaccharides/chemistry , Sulfuric Acids/metabolism , Tritium
3.
J Biol Chem ; 272(44): 28158-63, 1997 Oct 31.
Article in English | MEDLINE | ID: mdl-9346972

ABSTRACT

Glucuronyl C5-epimerases catalyze the conversion of D-glucuronic acid (GlcUA) to L-iduronic acid (IdceA) units during the biosynthesis of glycosaminoglycans. An epimerase implicated in the generation of heparin/heparan sulfate was previously purified to homogeneity from bovine liver (Campbell, P., Hannesson, H. H., Sandbäck, D., Rodén, L., Lindahl, U., and Li, J.-p. (1994) J. Biol. Chem. 269, 26953-26958). The present report describes the molecular cloning and functional expression of the lung enzyme. The cloned enzyme contains 444 amino acid residues and has a molecular mass of 49,905 Da. N-terminal sequence analysis of the isolated liver enzyme showed this species to be a truncated form lacking a 73-residue N-terminal domain of the deduced amino acid sequence. The coding cDNA insert was cloned into a baculovirus expression vector and expressed in Sf9 insect cells. Cells infected with recombinant epimerase showed a 20-30-fold increase in enzyme activity, measured as release of 3H2O from a polysaccharide substrate containing C5-3H-labeled hexuronic acid units. Furthermore, incubation of the expressed protein with the appropriate (GlcUA-GlcNSO3)n substrate resulted in conversion of approximately 20% of the GlcUA units into IdceA residues. Northern analysis implicated two epimerase transcripts in both bovine lung and liver tissues, a dominant approximately 9-kilobase (kb) mRNA and a minor approximately 5-kb species. Mouse mastocytoma cells showed only the approximately 5-kb transcript. A comparison of the cloned epimerase with the enzymes catalyzing an analogous reaction in alginate biosynthesis revealed no apparent amino acid sequence similarity.


Subject(s)
Carbohydrate Epimerases/genetics , Heparitin Sulfate/biosynthesis , Lung/enzymology , Amino Acid Sequence , Animals , Base Sequence , Cattle , Cloning, Molecular , DNA Probes , DNA, Complementary , Mice , Molecular Sequence Data
4.
Biochem J ; 313 ( Pt 2): 589-96, 1996 Jan 15.
Article in English | MEDLINE | ID: mdl-8573097

ABSTRACT

The capsular polysaccharide from Escherichia coli K4 consists of a chondroitin ([GlcA(beta 1-->3)GalNAc(beta 1-->4)]n) backbone, to which beta-fructofuranose units are linked to C-3 of D-glucuronic acid (GlcA) residues. Removal of the fructose units by mild acid hydrolysis provided a substrate for the GlcA C-5 epimerase, which is involved in the generation of L-iduronic acid (IdoA) units during dermatan sulphate biosynthesis. Incubation of this substrate with solubilized fibroblast microsomal enzyme in the presence of 3H2O resulted in the incorporation of tritium at C-5 of hexuronyl units. A Km of 67 x 10(-6) M hexuronic acid (equivalent to disaccharide units) was determined, which is similar to that (80 x 10(-6) M) obtained for dermatan (desulphated dermatan sulphate). Vmax was about 4 times higher with dermatan than with the K4 substrate. A defructosylated K4 polysaccharide isolated after incubation of bacteria with D-[5-3H]glucose released 3H2O on reaction with the epimerase, and thus could be used to assay the enzyme. Incubation of a K4 substrate with solubilized microsomal epimerase for 6 h in the presence of 3H2O resulted in the formation of about 5% IdoA and approximately equal amounts of 3H in GlcA and IdoA. A corresponding incubation of dermatan yielded approx. 22% GlcA, which contained virtually all the 3H label. These results are tentatively explained in terms of a two-base reaction mechanism, involving a monoprotic L-ido-specific base and a polyprotic D-gluco-specific base. Most of the IdoA residues generated by the enzyme occurred singly, although some formation of two or three consecutive IdoA-containing disaccharide units was observed.


Subject(s)
Dermatan Sulfate/biosynthesis , Escherichia coli/metabolism , Fructose/metabolism , Polysaccharides, Bacterial/metabolism , Bacterial Capsules , Carbohydrate Epimerases/metabolism , Carbohydrate Sequence , Humans , Molecular Sequence Data , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...