Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ecology ; 102(1): e03205, 2021 01.
Article in English | MEDLINE | ID: mdl-32979225

ABSTRACT

Understanding factors that maintain ecosystem stability is critical in the face of environmental change. Experiments simulating species loss from grassland have shown that losing biodiversity decreases ecosystem stability. However, as the originally sown experimental communities with reduced biodiversity develop, plant evolutionary processes or the assembly of interacting soil organisms may allow ecosystems to increase stability over time. We explored such effects in a long-term grassland biodiversity experiment with plant communities with either a history of co-occurrence (selected communities) or no such history (naïve communities) over a 4-yr period in which a major flood disturbance occurred. Comparing communities of identical species composition, we found that selected communities had temporally more stable biomass than naïve communities, especially at low species richness. Furthermore, selected communities showed greater biomass recovery after flooding, resulting in more stable post-flood productivity. In contrast to a previous study, the positive diversity-stability relationship was maintained after the flooding. Our results were consistent across three soil treatments simulating the presence or absence of co-selected microbial communities. We suggest that prolonged exposure of plant populations to a particular community context and abiotic site conditions can increase ecosystem temporal stability and resilience due to short-term evolution. A history of co-occurrence can in part compensate for species loss, as can high plant diversity in part compensate for the missing opportunity of such adaptive adjustments.


Subject(s)
Ecosystem , Grassland , Biodiversity , Biomass , Plants
2.
Mol Ecol ; 28(4): 863-878, 2019 02.
Article in English | MEDLINE | ID: mdl-30575197

ABSTRACT

Soil microbes are known to be key drivers of several essential ecosystem processes such as nutrient cycling, plant productivity and the maintenance of plant species diversity. However, how plant species diversity and identity affect soil microbial diversity and community composition in the rhizosphere is largely unknown. We tested whether, over the course of 11 years, distinct soil bacterial communities developed under plant monocultures and mixtures, and if over this time frame plants with a monoculture or mixture history changed in the bacterial communities they associated with. For eight species, we grew offspring of plants that had been grown for 11 years in the same field monocultures or mixtures (plant history in monoculture vs. mixture) in pots inoculated with microbes extracted from the field monoculture and mixture soils attached to the roots of the host plants (soil legacy). After 5 months of growth in the glasshouse, we collected rhizosphere soil from each plant and used 16S rRNA gene sequencing to determine the community composition and diversity of the bacterial communities. Bacterial community structure in the plant rhizosphere was primarily determined by soil legacy and by plant species identity, but not by plant history. In seven of the eight plant species the number of individual operational taxonomic units with increased abundance was larger when inoculated with microbes from mixture soil. We conclude that plant species richness can affect below-ground community composition and diversity, feeding back to the assemblage of rhizosphere bacterial communities in newly establishing plants via the legacy in soil.


Subject(s)
Biodiversity , Microbiota/physiology , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Rhizosphere , Soil Microbiology
3.
Ecol Lett ; 21(1): 128-137, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29148170

ABSTRACT

Species extinctions from local communities negatively affect ecosystem functioning. Ecological mechanisms underlying these impacts are well studied, but the role of evolutionary processes is rarely assessed. Using a long-term field experiment, we tested whether natural selection in plant communities increased biodiversity effects on productivity. We re-assembled communities with 8-year co-selection history adjacent to communities with identical species composition but no history of co-selection ('naïve communities'). Monocultures, and in particular mixtures of two to four co-selected species, were more productive than their corresponding naïve communities over 4 years in soils with or without co-selected microbial communities. At the highest diversity level of eight plant species, no such differences were observed. Our findings suggest that plant community evolution can lead to rapid increases in ecosystem functioning at low diversity but may take longer at high diversity. This effect was not modified by treatments simulating co-evolutionary processes between plants and soil organisms.


Subject(s)
Biodiversity , Plants , Ecology , Ecosystem , Plant Development , Soil
4.
PLoS One ; 9(12): e114434, 2014.
Article in English | MEDLINE | ID: mdl-25502441

ABSTRACT

A small multigene family encodes 4-coumarate:CoA ligases (4CLs) catalyzing the CoA ligation of hydroxycinnamic acids, a branch point step directing metabolites to a flavonoid or monolignol pathway. In the present study, we examined the effect of antisense Populus tremuloides 4CL (Pt4CL1) to the lignin and soluble phenolic compound composition of silver birch (Betula pendula) Pt4CL1a lines in comparison with non-transgenic silver birch clones. The endogenous expression of silver birch 4CL genes was recorded in the stems and leaves and also in leaves that were mechanically injured. In one of the transgenic Pt4CL1a lines, the ratio of syringyl (S) and guaiacyl (G) lignin units was increased. Moreover, the transcript levels of putative silver birch 4CL gene (Bp4CL1) were reduced and contents of cinnamic acid derivatives altered. In the other two Pt4CL1a lines changes were detected in the level of individual phenolic compounds. However, considerable variation was found in the transcript levels of silver birch 4CLs as well as in the concentration of phenolic compounds among the transgenic lines and non-transgenic clones. Wounding induced the expression of Bp4CL1 and Bp4CL2 in leaves in all clones and transgenic lines, whereas the transcript levels of Bp4CL3 and Bp4CL4 remained unchanged. Moreover, minor changes were detected in the concentrations of phenolic compounds caused by wounding. As an overall trend the wounding decreased the flavonoid content in silver birches and increased the content of soluble condensed tannins. The results indicate that by reducing the Bp4CL1 transcript levels lignin composition could be modified. However, the alterations found among the Pt4CL1a lines and the non-transgenic clones were within the natural variation of silver birches, as shown in the present study by the clonal differences in the transcripts levels of 4CL genes, soluble phenolic compounds and condensed tannins.


Subject(s)
Betula/genetics , Betula/metabolism , Coenzyme A Ligases/genetics , Gene Expression Regulation, Plant , Phenols/metabolism , Populus/genetics , Betula/enzymology , Biomechanical Phenomena , Cloning, Molecular , Coenzyme A Ligases/deficiency , Phenols/chemistry , Plant Leaves/genetics , Plants, Genetically Modified , RNA, Messenger/genetics , RNA, Messenger/metabolism , Solubility
SELECTION OF CITATIONS
SEARCH DETAIL
...