Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
Pain Rep ; 6(2): e936, 2021.
Article in English | MEDLINE | ID: mdl-34104842

ABSTRACT

INTRODUCTION: Ketamine, an anesthetic adjunct, is routinely administered as part of a balanced general anesthetic technique. We recently showed that the acute analgesic and dissociation properties of ketamine are separable to suggest that distinct neural circuits underlie these states. OBJECTIVE: We aimed to study whether this finding is robust to the substantial neural circuit alterations associated with general anesthesia. METHODS: We conducted a single-site, open-label, randomized controlled, cross-over study of sevoflurane and sevoflurane-plus-ketamine (SK) general anesthesia in healthy subjects (n = 12). Before and after general anesthesia, we assessed precalibrated cuff pain intensity and nociceptive pain quality as well as dissociation using the Clinician-Administered Dissociative States Scale (CADSS). For statistical inference, we ran a variation of backward elimination repeated-measures analysis of covariance. Models with CADSS as a covariate term were used to assess whether dissociation mediated the effect of ketamine on pain intensity and quality. RESULTS: Sevoflurane-plus-ketamine general anesthesia was associated with a significant (P = 0.0002) pain intensity decline of 3 (SE, 0.44). There was an order effect for dissociation such that SK was associated with a significant (P = 0.0043) CADSS increase of 17.8 (3.2) when the SK treatment came first. When the pain intensity model was reanalyzed with CADSS as an additional covariate, the effect of CADSS was not significant. These results were also conserved for pain quality. CONCLUSIONS: Our findings suggest that the analgesic and dissociation properties of ketamine remain separable despite general anesthesia. Thus, ketamine may be used as a probe to advance our knowledge of dissociation independent pain circuits.

2.
J Sleep Res ; 30(5): e13322, 2021 10.
Article in English | MEDLINE | ID: mdl-33759264

ABSTRACT

Hospitalized older patients who undergo elective cardiac surgery with cardiopulmonary bypass are prone to postoperative delirium. Self-reported shorter sleep and longer sleep have been associated with impaired cognition. Few data exist to guide us on whether shorter or longer sleep is associated with postoperative delirium in this hospitalized cohort. This was a prospective, single-site, observational study of hospitalized patients (>60 years) scheduled to undergo elective major cardiac surgery with cardiopulmonary bypass (n = 16). We collected and analysed overnight polysomnography data using the Somté PSG device and assessed for delirium twice a day until postoperative day 3 using the long version of the confusion assessment method and a structured chart review. We also assessed subjective sleep quality using the Pittsburg Sleep Quality Index. The delirium median preoperative hospital stay of 9 [Q1, Q3: 7, 11] days was similar to the non-delirium preoperative hospital stay of 7 [4, 9] days (p = .154). The incidence of delirium was 45.5% (10/22) in the entire study cohort and 50% (8/16) in the final cohort with clean polysomnography data. The preoperative delirium median total sleep time of 323.8 [Q1, Q3: 280.3, 382.1] min was longer than the non-delirium median total sleep time of 254.3 [210.9, 278.1] min (p = .046). This was accounted for by a longer delirium median non-rapid eye movement (REM) stage 2 sleep duration of 282.3 [229.8, 328.8] min compared to the non-delirium median non-REM stage 2 sleep duration of 202.5 [174.4, 208.9] min (p = .012). Markov chain modelling confirmed these findings. There were no differences in measures of sleep quality assessed by the Pittsburg Sleep Quality Index. Polysomnography measures of sleep obtained the night preceding surgery in hospitalized older patients scheduled for elective major cardiac surgery with cardiopulmonary bypass are suggestive of an association between longer sleep duration and postoperative delirium.


Subject(s)
Cardiac Surgical Procedures , Delirium , Aged , Cardiac Surgical Procedures/adverse effects , Delirium/diagnosis , Delirium/epidemiology , Delirium/etiology , Humans , Polysomnography , Prospective Studies , Sleep
3.
Anesthesiology ; 133(5): 1021-1028, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32898213

ABSTRACT

BACKGROUND: Ketamine is a dissociative anesthetic with analgesic properties. Ketamine's analgesic properties have been suggested to result from its dissociative properties. To the authors' knowledge, this postulate is unsubstantiated. The authors hypothesize that the dissociative and analgesic properties of ketamine are independent. METHODS: The authors conducted a single-site, open-label study of ketamine anesthesia (2 mg/kg) in 15 healthy subjects. Midazolam was administered at a prespecified time point to attenuate dissociation. The authors longitudinally assessed precalibrated cuff pain intensity and quality using Patient-Reported Outcomes Measurement Information System questionnaires, and dissociation, using the Clinician Administered Dissociative States Scale. Mixed effects models were used to assess whether dissociation accounted for the effect of ketamine on pain intensity and quality. RESULTS: The dissociation model demonstrated an inverted U-shaped quadratic relationship between time and dissociation scores. Additive to this effect, midazolam reduced the dissociation adjusted means by 10.3 points (95% CI, 3.4 to 17.1; P = 0.005). The pain intensity model also demonstrated a U-shaped quadratic relationship between time and pain intensity. When the pain intensity model was reanalyzed with dissociation scores as an additional covariate, the dissociation term was not retained in the model, and the other effects were preserved in direction and strength. This result was conserved for nociceptive and neuropathic pain quality. CONCLUSIONS: Ketamine's analgesic properties are not exclusively caused by dissociation. Thus, ketamine may be used as a probe to advance our knowledge of dissociation independent neural circuits that encode pain.


Subject(s)
Analgesics/administration & dosage , Anesthetics, Dissociative/administration & dosage , Electroencephalography/drug effects , Ketamine/administration & dosage , Pain Measurement/drug effects , Administration, Intravenous , Adult , Electroencephalography/methods , Female , Humans , Male , Pain Measurement/methods , Young Adult
4.
J Neural Eng ; 17(4): 046020, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32485685

ABSTRACT

OBJECTIVE: The ability to monitor anesthetic states using automated approaches is expected to reduce inaccurate drug dosing and side-effects. Commercially available anesthetic state monitors perform poorly when ketamine is administered as an anesthetic-analgesic adjunct. Poor performance is likely because the models underlying these monitors are not optimized for the electroencephalogram (EEG) oscillations that are unique to the co-administration of ketamine. APPROACH: In this work, we designed two k-nearest neighbors algorithms for anesthetic state prediction. MAIN RESULTS: The first algorithm was trained only on sevoflurane EEG data, making it sevoflurane-specific. This algorithm enabled discrimination of the sevoflurane general anesthesia (GA) state from sedated and awake states (true positive rate = 0.87, [95% CI, 0.76, 0.97]). However, it did not enable discrimination of the sevoflurane-plus-ketamine GA state from sedated and awake states (true positive rate = 0.43, [0.19, 0.67]). In our second algorithm, we implemented a cross drug training paradigm by including both sevoflurane and sevoflurane-plus-ketamine EEG data in our training set. This algorithm enabled discrimination of the sevoflurane-plus-ketamine GA state from sedated and awake states (true positive rate = 0.91, [0.84, 0.98]). SIGNIFICANCE: Instead of a one-algorithm-fits-all-drugs approach to anesthetic state monitoring, our results suggest that drug-specific models are necessary to improve the performance of automated anesthetic state monitors.


Subject(s)
Anesthetics, Inhalation , Pharmaceutical Preparations , Electroencephalography , Machine Learning , Sevoflurane
5.
Commun Biol ; 2: 415, 2019.
Article in English | MEDLINE | ID: mdl-31754645

ABSTRACT

Understanding anesthetic mechanisms with the goal of producing anesthetic states with limited systemic side effects is a major objective of neuroscience research in anesthesiology. Coherent frontal alpha oscillations have been postulated as a mechanism of sevoflurane general anesthesia. This postulate remains unproven. Therefore, we performed a single-site, randomized, cross-over, high-density electroencephalogram study of sevoflurane and sevoflurane-plus-ketamine general anesthesia in 12 healthy subjects. Data were analyzed with multitaper spectral, global coherence, cross-frequency coupling, and phase-dependent methods. Our results suggest that coherent alpha oscillations are not fundamental for maintaining sevoflurane general anesthesia. Taken together, our results suggest that subanesthetic and general anesthetic sevoflurane brain states emerge from impaired information processing instantiated by a delta-higher frequency phase-amplitude coupling syntax. These results provide fundamental new insights into the neural circuit mechanisms of sevoflurane anesthesia and suggest that anesthetic states may be produced by extracranial perturbations that cause delta-higher frequency phase-amplitude interactions.


Subject(s)
Anesthesia, General , Anesthetics, Inhalation/pharmacology , Neurons/drug effects , Neurons/metabolism , Sevoflurane/pharmacology , Synaptic Transmission/drug effects , Anesthetics, Inhalation/administration & dosage , Electroencephalography , Electrophysiological Phenomena , Humans , Sevoflurane/administration & dosage
6.
BMJ Open ; 8(4): e020316, 2018 04 20.
Article in English | MEDLINE | ID: mdl-29678977

ABSTRACT

INTRODUCTION: Delirium, which is prevalent in postcardiac surgical patients, is an acute brain dysfunction characterised by disturbances in attention, awareness and cognition not explained by a pre-existing neurocognitive disorder. The pathophysiology of delirium remains poorly understood. However, basic science and clinical studies suggest that sleep disturbance may be a modifiable risk factor for the development of delirium. Dexmedetomidine is a α-2A adrenergic receptor agonist medication that patterns the activity of various arousal nuclei similar to sleep. A single night-time loading dose of dexmedetomidine promotes non-rapid eye movement sleep stages N2 and N3 sleep. This trial hypothesises dexmedetomidine-induced sleep as pre-emptive therapy for postoperative delirium. METHODS AND ANALYSIS: The MINDDS (Minimizing ICU Neurological Dysfunction with Dexmedetomidine-induced Sleep) trial is a 370-patient block-randomised, placebo-controlled, double-blinded, single-site, parallel-arm superiority trial. Patients over 60 years old, undergoing cardiac surgery with planned cardiopulmonary bypass, will be randomised to receive a sleep-inducing dose of dexmedetomidine or placebo. The primary outcome is the incidence of delirium on postoperative day 1, assessed with the Confusion Assessment Method by staff blinded to the treatment assignment. To ensure that the study is appropriately powered for the primary outcome measure, patients will be recruited and randomised into the study until 370 patients receive the study intervention on postoperative day 0. Secondary outcomes will be evaluated by in-person assessments and medical record review for in-hospital end points, and by telephone interview for 30-day, 90-day and 180-day end points. All trial outcomes will be evaluated using an intention-to-treat analysis plan. Hypothesis testing will be performed using a two-sided significance level (type I error) of α=0.05. Sensitivity analyses using the actual treatment received will be performed and compared with the intention-to-treat analysis results. Additional sensitivity analyses will assess the potential impact of missing data due to loss of follow-up. ETHICS AND DISSEMINATION: The Partners Human Research Committee approved the MINDDS trial. Recruitment began in March 2017. Dissemination plans include presentations at scientific conferences, scientific publications and popular media. TRIAL REGISTRATION NUMBER: NCT02856594.


Subject(s)
Adrenergic alpha-2 Receptor Agonists/therapeutic use , Cardiac Surgical Procedures/adverse effects , Delirium/prevention & control , Dexmedetomidine/therapeutic use , Intensive Care Units , Sleep Wake Disorders/prevention & control , Anesthesia, Cardiac Procedures/adverse effects , Cardiopulmonary Bypass/adverse effects , Delirium/etiology , Double-Blind Method , Humans , Sleep/drug effects , Sleep Wake Disorders/etiology , Systemic Inflammatory Response Syndrome/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...