Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Front Physiol ; 14: 1183101, 2023.
Article in English | MEDLINE | ID: mdl-37435300

ABSTRACT

Duchenne muscular dystrophy (DMD) is a severe, progressive, and ultimately fatal disease of skeletal muscle wasting, respiratory insufficiency, and cardiomyopathy. The identification of the dystrophin gene as central to DMD pathogenesis has led to the understanding of the muscle membrane and the proteins involved in membrane stability as the focal point of the disease. The lessons learned from decades of research in human genetics, biochemistry, and physiology have culminated in establishing the myriad functionalities of dystrophin in striated muscle biology. Here, we review the pathophysiological basis of DMD and discuss recent progress toward the development of therapeutic strategies for DMD that are currently close to or are in human clinical trials. The first section of the review focuses on DMD and the mechanisms contributing to membrane instability, inflammation, and fibrosis. The second section discusses therapeutic strategies currently used to treat DMD. This includes a focus on outlining the strengths and limitations of approaches directed at correcting the genetic defect through dystrophin gene replacement, modification, repair, and/or a range of dystrophin-independent approaches. The final section highlights the different therapeutic strategies for DMD currently in clinical trials.

2.
Front Bioeng Biotechnol ; 11: 1207858, 2023.
Article in English | MEDLINE | ID: mdl-37292098

ABSTRACT

Background: The ultrathin-strut drug-eluting stent (DES) has shown better clinical results than thin- or thick-strut DES. We investigated if re-endothelialization was different among three types of DES: ultrathin-strut abluminal polymer-coated sirolimus-eluting stent (SES), thin-strut circumferential polymer-coated everolimus-eluting stent (EES), and thick-strut polymer-free biolimus-eluting stent (BES) to gain insight into the effect of stent design on promoting vascular healing. Methods: After implanting three types of DES in the coronary arteries of minipigs, we performed optical coherence tomography (OCT) at weeks 2, 4, and 12 (n = 4, each). Afterward, we harvested the coronary arteries and performed immunofluorescence for endothelial cells (ECs), smooth muscle cells (SMCs), and nuclei. We obtained 3D stack images of the vessel wall and reconstructed the en face view of the inner lumen. We compared re-endothelialization and associated factors among the different types of stents at different time points. Results: SES showed significantly faster and denser re-endothelialization than EES and BES at weeks 2 and 12. Especially in week 2, SES elicited the fastest SMC coverage and greater neointimal cross-sectional area (CSA) compared to EES and BES. A strong correlation between re-endothelialization and SMC coverage was observed in week 2. However, the three stents did not show any difference at weeks 4 and 12 in SMC coverage and neointimal CSA. At weeks 2 and 4, SMC layer morphology showed a significant difference between stents. A sparse SMC layer was associated with denser re-endothelialization and was significantly higher in SES. Unlike the sparse SMC layer, the dense SMC layer did not promote re-endothelialization during the study period. Conclusion: Re-endothelialization after stent implantation was related to SMC coverage and SMC layer differentiation, which were faster in SES. Further investigation is needed to characterize the differences among the SMCs and explore methods for increasing the sparse SMC layer in order to improve stent design and enhance safety and efficacy.

3.
Skelet Muscle ; 13(1): 9, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37208786

ABSTRACT

Duchenne muscular dystrophy (DMD) is caused by the lack of dystrophin, a cytoskeletal protein essential for the preservation of the structural integrity of the muscle cell membrane. DMD patients develop severe skeletal muscle weakness, degeneration, and early death. We tested here amphiphilic synthetic membrane stabilizers in mdx skeletal muscle fibers (flexor digitorum brevis; FDB) to determine their effectiveness in restoring contractile function in dystrophin-deficient live skeletal muscle fibers. After isolating FDB fibers via enzymatic digestion and trituration from thirty-three adult male mice (9 C57BL10, 24 mdx), these were plated on a laminin-coated coverslip and treated with poloxamer 188 (P188; PEO75-PPO30-PEO75; 8400 g/mol), architecturally inverted triblock (PPO15-PEO200-PPO15, 10,700 g/mol), and diblock (PEO75-PPO16-C4, 4200 g/mol) copolymers. We assessed the twitch kinetics of sarcomere length (SL) and intracellular Ca2+ transient by Fura-2AM by field stimulation (25 V, 0.2 Hz, 25 °C). Twitch contraction peak SL shortening of mdx FDB fibers was markedly depressed to 30% of the dystrophin-replete control FDB fibers from C57BL10 (P < 0.001). Compared to vehicle-treated mdx FDB fibers, copolymer treatment robustly and rapidly restored the twitch peak SL shortening (all P < 0.05) by P188 (15 µM = + 110%, 150 µM = + 220%), diblock (15 µM = + 50%, 150 µM = + 50%), and inverted triblock copolymer (15 µM = + 180%, 150 µM = + 90%). Twitch peak Ca2+ transient from mdx FDB fibers was also depressed compared to C57BL10 FDB fibers (P < 0.001). P188 and inverted triblock copolymer treatment of mdx FDB fibers increased the twitch peak Ca2+ transient (P < 0.001). This study shows synthetic block copolymers with varied architectures can rapidly and highly effectively enhance contractile function in live dystrophin-deficient skeletal muscle fibers.


Subject(s)
Dystrophin , Muscular Dystrophy, Duchenne , Male , Animals , Mice , Dystrophin/metabolism , Mice, Inbred mdx , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Muscle Contraction , Muscular Dystrophy, Duchenne/metabolism
4.
Mol Ther Methods Clin Dev ; 28: 162-176, 2023 Mar 09.
Article in English | MEDLINE | ID: mdl-36654800

ABSTRACT

First-in-class membrane stabilizer Poloxamer 188 (P188) has been shown to confer membrane protection in an extensive range of clinical conditions; however, elements of the systemic distribution and localization of P188 at the organ, tissue, and muscle fiber levels in vivo have not yet been elucidated. Here we used non-invasive fluorescence imaging to directly visualize and track the distribution and localization of P188 in vivo. The results demonstrated that the Alx647 probe did not alter the fundamental properties of P188 to protect biological membranes. Distribution kinetics in mdx mice demonstrated that Alx647 did not interface with muscle membranes and had fast clearance kinetics. In contrast, the distribution kinetics for P188-Alx647 was significantly slower, indicating a dramatic depot and retention effect of P188. Results further demonstrated the significant retention of P188-Alx647 in the skeletal muscle of mdx mice, showing a significant genotype effect with a higher fluorescence signal in the mdx muscles over BL10 mice. High-resolution optical imaging provided direct evidence of P188 surrounding the sarcolemma of skeletal and cardiac muscle cells. Taken together, these findings provide direct evidence of muscle-disease-dependent molecular homing and retention of synthetic copolymers in striated muscles thereby facilitating advanced studies of copolymer-membrane association in health and disease.

5.
Free Radic Biol Med ; 194: 23-32, 2023 01.
Article in English | MEDLINE | ID: mdl-36436728

ABSTRACT

Patients with heart failure with reduced ejection fraction (HFrEF) experience diaphragm weakness that contributes to the primary disease symptoms of fatigue, dyspnea, and exercise intolerance. Weakness in the diaphragm is related to excessive production of reactive oxygen species (ROS), but the exact source of ROS remains unknown. NAD(P)H Oxidases (Nox), particularly the Nox2 and 4 isoforms, are important sources of ROS within skeletal muscle that contribute to optimal cell function. There are reports of increased Nox activity in the diaphragm of patients and animal models of HFrEF, implicating these complexes as possible sources of diaphragm dysfunction in HFrEF. To investigate the role of these proteins on diaphragm weakness in HFrEF, we generated inducible skeletal muscle specific knockouts of Nox2 or Nox4 using the Cre-Lox system and assessed diaphragm function in a mouse model of HFrEF induced by myocardial infarction. Diaphragm maximal specific force measured in vitro was depressed by ∼20% with HFrEF. Skeletal muscle knockout of Nox4 provided full protection against the loss of maximal force (p < 0.01), while the knockout of Nox2 provided partial protection (7% depression, p < 0.01). Knockout of Nox2 from skeletal myofibers improved survival from 50 to 80% following myocardial infarction (p = 0.026). Our findings show an important role for skeletal muscle NAD(P)H Oxidases contributing to loss of diaphragm maximal force in HFrEF, along with systemic pathophysiological responses following myocardial infarction.


Subject(s)
Heart Failure , Myocardial Infarction , Ventricular Dysfunction, Left , Animals , Mice , Diaphragm , Heart Failure/metabolism , Mice, Knockout , Muscle, Skeletal/metabolism , Myocardial Infarction/metabolism , NADPH Oxidase 4/genetics , NADPH Oxidase 4/metabolism , NADPH Oxidases/metabolism , Reactive Oxygen Species/metabolism , Stroke Volume/physiology , Ventricular Dysfunction, Left/metabolism
6.
Int J Mol Sci ; 23(24)2022 Dec 19.
Article in English | MEDLINE | ID: mdl-36555864

ABSTRACT

The cardiac sarcomere is a triumph of biological evolution wherein myriad contractile and regulatory proteins assemble into a quasi-crystalline lattice to serve as the central point upon which cardiac muscle contraction occurs. This review focuses on the many signaling components and mechanisms of regulation that impact cardiac sarcomere function. We highlight the roles of the thick and thin filament, both as necessary structural and regulatory building blocks of the sarcomere as well as targets of functionally impactful modifications. Currently, a new focus emerging in the field is inter-myofilament signaling, and we discuss here the important mediators of this mechanism, including myosin-binding protein C and titin. As the understanding of sarcomere signaling advances, so do the methods with which it is studied. This is reviewed here through discussion of recent live muscle systems in which the sarcomere can be studied under intact, physiologically relevant conditions.


Subject(s)
Myocardium , Sarcomeres , Sarcomeres/metabolism , Myocardium/metabolism , Heart/physiology , Connectin/metabolism , Myofibrils/physiology , Myocardial Contraction/physiology
7.
Sci Rep ; 12(1): 18116, 2022 10 27.
Article in English | MEDLINE | ID: mdl-36302792

ABSTRACT

The sarcomere is the functional unit of skeletal muscle, essential for proper contraction. Numerous acquired and inherited myopathies impact sarcomere function causing clinically significant disease. Mechanistic investigations of sarcomere activation have been challenging to undertake in the context of intact, live skeletal muscle fibers during real time physiological twitch contractions. Here, a skeletal muscle specific, intramolecular FRET-based biosensor was designed and engineered into fast skeletal muscle troponin C (TnC) to investigate the dynamics of sarcomere activation. In transgenic animals, the TnC biosensor incorporated into the skeletal muscle fiber sarcomeres by stoichiometric replacement of endogenous TnC and did not alter normal skeletal muscle contractile form or function. In intact single adult skeletal muscle fibers, real time twitch contractile data showed the TnC biosensor transient preceding the peak amplitude of contraction. Importantly, under physiological temperatures, inactivation of the TnC biosensor transient decayed significantly more slowly than the Ca2+ transient and contraction. The uncoupling of the TnC biosensor transient from the Ca2+ transient indicates the biosensor is not functioning as a Ca2+ transient reporter, but rather reports dynamic sarcomere activation/ inactivation that, in turn, is due to the ensemble effects of multiple activating ligands within the myofilaments. Together, these findings provide the foundation for implementing this new biosensor in future physiological studies investigating the mechanism of activation of the skeletal muscle sarcomere in health and disease.


Subject(s)
Biosensing Techniques , Sarcomeres , Animals , Sarcomeres/metabolism , Myofibrils/metabolism , Troponin C/metabolism , Fluorescence Resonance Energy Transfer , Calcium/metabolism , Muscle Contraction/physiology , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism
8.
Exp Physiol ; 107(11): 1312-1325, 2022 11.
Article in English | MEDLINE | ID: mdl-35938289

ABSTRACT

NEW FINDINGS: What is the central question of this study? This study addresses whether a high-fat, high-sucrose diet causes cardiac and diaphragm muscle abnormalities in male rats and whether supplementation with the antioxidant N-acetylcysteine reverses diet-induced dysfunction. What is the main finding and its importance? N-Acetylcysteine attenuated the effects of high-fat, high-sucrose diet on markers of cardiac hypertrophy and diastolic dysfunction, but neither high-fat, high-sucrose diet nor N-acetylcysteine affected the diaphragm. These results support the use of N-acetylcysteine to attenuate cardiovascular dysfunction induced by a 'Western' diet. ABSTRACT: Individuals with overweight or obesity display respiratory and cardiovascular dysfunction, and oxidative stress is a causative factor in the general aetiology of obesity and of skeletal and cardiac muscle pathology. Thus, this preclinical study aimed to define diaphragmatic and cardiac morphological and functional alterations in response to an obesogenic diet in rats and the therapeutic potential of an antioxidant supplement, N-acetylcysteine (NAC). Young male Wistar rats consumed ad libitum a 'lean' or high-saturated fat, high-sucrose (HFHS) diet for ∼22 weeks and were randomized to control or NAC (2 mg/ml in the drinking water) for the last 8 weeks of the dietary intervention. We then evaluated diaphragmatic and cardiac morphology and function. Neither HFHS diet nor NAC supplementation affected diaphragm-specific force, peak power or morphology. Right ventricular weight normalized to estimated body surface area, left ventricular fractional shortening and posterior wall maximal shortening velocity were higher in HFHS compared with lean control animals and not restored by NAC. In HFHS rats, the elevated deceleration rate of early transmitral diastolic velocity was prevented by NAC. Our data showed that the HFHS diet did not compromise diaphragmatic muscle morphology or in vitro function, suggesting other possible contributors to breathing abnormalities in obesity (e.g., abnormalities of neuromuscular transmission). However, the HFHS diet resulted in cardiac functional and morphological changes suggestive of hypercontractility and diastolic dysfunction. Supplementation with NAC did not affect diaphragm morphology or function but attenuated some of the cardiac abnormalities in the rats receiving the HFHS diet.


Subject(s)
Acetylcysteine , Sucrose , Animals , Male , Rats , Acetylcysteine/therapeutic use , Antioxidants/therapeutic use , Diet, High-Fat , Fatty Acids , Obesity , Rats, Wistar , Respiratory Muscles
9.
J Appl Physiol (1985) ; 132(1): 106-125, 2022 01 01.
Article in English | MEDLINE | ID: mdl-34792407

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) accounts for ∼50% of all patients with heart failure and frequently affects postmenopausal women. The HFpEF condition is phenotype-specific, with skeletal myopathy that is crucial for disease development and progression. However, most of the current preclinical models of HFpEF have not addressed the postmenopausal phenotype. We sought to advance a rodent model of postmenopausal HFpEF and examine skeletal muscle abnormalities therein. Female, ovariectomized, spontaneously hypertensive rats (SHRs) were fed a high-fat, high-sucrose diet to induce HFpEF. Controls were female sham-operated Wistar-Kyoto rats on a lean diet. In a complementary, longer-term cohort, controls were female sham-operated SHRs on a lean diet to evaluate the effect of strain difference in the model. Our model developed key features of HFpEF that included increased body weight, glucose intolerance, hypertension, cardiac hypertrophy, diastolic dysfunction, exercise intolerance, and elevated plasma cytokines. In limb skeletal muscle, HFpEF decreased specific force by 15%-30% (P < 0.05) and maximal mitochondrial respiration by 40%-55% (P < 0.05), increased oxidized glutathione by approximately twofold (P < 0.05), and tended to increase mitochondrial H2O2 emission (P = 0.10). Muscle fiber cross-sectional area, markers of mitochondrial content, and indices of capillarity were not different between control and HFpEF in our short-term cohort. Overall, our preclinical model of postmenopausal HFpEF recapitulates several key features of the disease. This new model reveals contractile and mitochondrial dysfunction and redox imbalance that are potential contributors to abnormal metabolism, exercise intolerance, and diminished quality of life in patients with postmenopausal HFpEF.NEW & NOTEWORTHY Heart failure with preserved ejection fraction (HFpEF) is a condition with phenotype-specific features highly prevalent in postmenopausal women and skeletal myopathy contributing to disease development and progression. We advanced a rat model of postmenopausal HFpEF with key cardiovascular and systemic features of the disease. Our study shows that the skeletal myopathy of postmenopausal HFpEF includes loss of limb muscle-specific force independent of atrophy, mitochondrial dysfunction, and oxidized shift in redox balance.


Subject(s)
Heart Failure , Muscular Diseases , Animals , Female , Humans , Hydrogen Peroxide , Postmenopause , Quality of Life , Rats , Rats, Inbred WKY , Stroke Volume
10.
Cell Physiol Biochem ; 55(4): 489-504, 2021 Aug 20.
Article in English | MEDLINE | ID: mdl-34416105

ABSTRACT

BACKGROUND/AIMS: Diaphragm dysfunction with increased reactive oxygen species (ROS) occurs within 72 hrs post-myocardial infarction (MI) in mice and may contribute to loss of inspiratory maximal pressure and endurance in patients. METHODS: We used wild-type (WT) and whole-body Nox4 knockout (Nox4KO) mice to measure diaphragm bundle force in vitro with a force transducer, mitochondrial respiration in isolated fiber bundles with an O2 sensor, mitochondrial ROS by fluorescence, mRNA (RT-PCR) and protein (immunoblot), and fiber size by histology 72 hrs post-MI. RESULTS: MI decreased diaphragm fiber cross-sectional area (CSA) (~15%, p = 0.015) and maximal specific force (10%, p = 0.005), and increased actin carbonylation (5-10%, p = 0.007) in both WT and Nox4KO. Interestingly, MI did not affect diaphragm mRNA abundance of MAFbx/atrogin-1 and MuRF-1 but Nox4KO decreased it by 20-50% (p < 0.01). Regarding the mitochondria, MI and Nox4KO decreased the protein abundance of citrate synthase and subunits of electron transport system (ETS) complexes and increased mitochondrial O2 flux (JO2) and H2O2 emission (JH2O2) normalized to citrate synthase. Mitochondrial electron leak (JH2O2/JO2) in the presence of ADP was lower in Nox4KO and not changed by MI. CONCLUSION: Our study shows that the early phase post-MI causes diaphragm atrophy, contractile dysfunction, sarcomeric actin oxidation, and decreases citrate synthase and subunits of mitochondrial ETS complexes. These factors are potential causes of loss of inspiratory muscle strength and endurance in patients, which likely contribute to the pathophysiology in the early phase post-MI. Whole-body Nox4KO did not prevent the diaphragm abnormalities induced 72 hrs post-MI, suggesting that systemic pharmacological inhibition of Nox4 will not benefit patients in the early phase post-MI.


Subject(s)
Diaphragm/enzymology , Mitochondria, Muscle/enzymology , Muscle Contraction , Muscular Atrophy/enzymology , Myocardial Infarction/enzymology , NADPH Oxidase 4/deficiency , Animals , Diaphragm/pathology , Male , Mice , Mice, Knockout , Mitochondria, Muscle/genetics , Mitochondria, Muscle/pathology , Muscular Atrophy/genetics , Muscular Atrophy/pathology , Myocardial Infarction/genetics , Myocardial Infarction/pathology , NADPH Oxidase 4/metabolism
11.
J Physiol ; 598(19): 4357-4369, 2020 10.
Article in English | MEDLINE | ID: mdl-33460123

ABSTRACT

KEY POINTS: Respiratory muscle function declines with ageing, contributing to breathing complications in the elderly. Here we report greater in vitro respiratory muscle contractile function in old mice receiving supplemental NaNO3 for 14 days compared with age-matched controls. Myofibrillar protein phosphorylation, which enhances contractile function, did not change in our study - a finding inconsistent with the hypothesis that this post-translational modification is a mechanism for dietary nitrate to improve muscle contractile function. Nitrate supplementation did not change the abundance of calcium-handling proteins in the diaphragm of old mice, in contrast with findings from the limb muscles of young mice in previous studies. Our findings suggest that nitrate supplementation enhances myofibrillar protein function without affecting the phosphorylation status of key myofibrillar proteins. ABSTRACT: Inspiratory muscle (diaphragm) function declines with age, contributing to ventilatory dysfunction, impaired airway clearance, and overall decreased quality of life. Diaphragm isotonic and isometric contractile properties are reduced with ageing, including maximal specific force, shortening velocity and peak power. Contractile properties of limb muscle in both humans and rodents can be improved by dietary nitrate supplementation, but effects on the diaphragm and mechanisms behind these improvements remain poorly understood. One potential explanation underlying the nitrate effects on contractile properties is increased phosphorylation of myofibrillar proteins, a downstream outcome of nitrate reduction to nitrite and nitric oxide. We hypothesized that dietary nitrate supplementation would improve diaphragm contractile properties in aged mice. To test our hypothesis, we measured the diaphragm function of old (24 months) mice allocated to 1 mm NaNO3 in drinking water for 14 days (n = 8) or untreated water (n = 6). The maximal rate of isometric force development (∼30%) and peak power (40%) increased with nitrate supplementation (P < 0.05). There were no differences in the phosphorylation status of key myofibrillar proteins and abundance of Ca2+-release proteins in nitrate vs. control animals. In general, our study demonstrates improved diaphragm contractile function with dietary nitrate supplementation and supports the use of this strategy to improve inspiratory function in ageing populations. Additionally, our findings suggest that dietary nitrate improves diaphragm contractile properties independent of changes in abundance of Ca2+-release proteins or phosphorylation of myofibrillar proteins.


Subject(s)
Diaphragm , Nitrates , Animals , Dietary Supplements , Mice , Muscle Contraction , Quality of Life
12.
J Am Coll Health ; 68(3): 236-241, 2020 04.
Article in English | MEDLINE | ID: mdl-30570444

ABSTRACT

Objective: Stair climbing is considered a good physical activity. Motivational signage has been successful in promoting stair usage in various settings. This study was to investigate the effects of motivational signage on stair usage in a Hispanic serving institution. Participants: A total of 31,067 pedestrians were observed from February to March 2013. Methods: Stair usage was monitored for 9 h per day each week at phase 1 (baseline), 2 (intervention), and 3 (post-intervention). Results: Overall, participants' stair usage was higher during phase 2 (49.0%) and phase 3 (48.0%), compared with phase 1 (39.7%). The participants during phase 2 and 3 were more likely to use the stairs compared to participants during phase 1, regardless of floor level (3-story or 4-story building), status (student or staff/faculty), and time of day (7:30-10:29, 10:30-13:29, or 13:30-16:30) (p < .001). Conclusion: Motivational signage can effectively encourage more stair usage, and hence promote healthy behavior in a predominantly Hispanic-serving institution.


Subject(s)
Exercise/psychology , Health Promotion/methods , Hispanic or Latino/psychology , Location Directories and Signs , Motivation , Students/psychology , Walking/psychology , Adult , Female , Health Behavior , Humans , Male , Universities , Young Adult
13.
Am J Physiol Cell Physiol ; 317(4): C665-C673, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31314583

ABSTRACT

Diaphragm abnormalities in aging or chronic diseases include impaired mitochondrial respiration and H2O2 emission, which can be measured using saponin-permeabilized muscle fibers. Mouse diaphragm presents a challenge for isolation of fibers due to relatively high abundance of connective tissue in healthy muscle that is exacerbated in disease states. We tested a new approach to process mouse diaphragm for assessment of intact mitochondria respiration and ROS emission in saponin-permeabilized fibers. We used the red gastrocnemius (RG) as "standard" limb muscle. Markers of mitochondrial content were two- to fourfold higher in diaphragm (Dia) than in RG (P < 0.05). Maximal O2 consumption (JO2: pmol·s-1·mg-1) in Dia was higher with glutamate, malate, and succinate (Dia 399 ± 127, RG 148 ± 60; P < 0.05) and palmitoyl-CoA + carnitine (Dia 15 ± 5, RG 7 ± 1; P < 0.05) than in RG, but not different between muscles when JO2 was normalized to citrate synthase activity. Absolute JO2 for Dia was two- to fourfold higher than reported in previous studies. Mitochondrial JH2O2 was higher in Dia than in RG (P < 0.05), but lower in Dia than in RG when JH2O2 was normalized to citrate synthase activity. Our findings are consistent with an optimized diaphragm preparation for assessment of intact mitochondria in permeabilized fiber bundles. The data also suggest that higher mitochondrial content potentially makes the diaphragm more susceptible to "mitochondrial onset" myopathy. Overall, the new approach will facilitate testing and understanding of diaphragm mitochondrial function in mouse models that are used to advance biomedical research and human health.


Subject(s)
Diaphragm/metabolism , Hydrogen Peroxide/metabolism , Mitochondria, Muscle/metabolism , Saponins/metabolism , Animals , Male , Mice, Inbred C57BL , Mitochondria/metabolism , Muscle Fibers, Skeletal , Muscle, Skeletal/metabolism , Oxygen Consumption/physiology , Respiration/drug effects
14.
Am J Physiol Cell Physiol ; 317(4): C701-C713, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31291144

ABSTRACT

Chronic kidney disease (CKD) leads to increased skeletal muscle fatigue, weakness, and atrophy. Previous work has implicated mitochondria within the skeletal muscle as a mediator of muscle dysfunction in CKD; however, the mechanisms underlying mitochondrial dysfunction in CKD are not entirely known. The purpose of this study was to define the impact of uremic metabolites on mitochondrial energetics. Skeletal muscle mitochondria were isolated from C57BL/6N mice and exposed to vehicle (DMSO) or varying concentrations of uremic metabolites: indoxyl sulfate, indole-3-acetic-acid, l-kynurenine, and kynurenic acid. A comprehensive mitochondrial phenotyping platform that included assessments of mitochondrial oxidative phosphorylation (OXPHOS) conductance and respiratory capacity, hydrogen peroxide production (JH2O2), matrix dehydrogenase activity, electron transport system enzyme activity, and ATP synthase activity was employed. Uremic metabolite exposure resulted in a ~25-40% decrease in OXPHOS conductance across multiple substrate conditions (P < 0.05, n = 5-6/condition), as well as decreased ADP-stimulated and uncoupled respiratory capacity. ATP synthase activity was not impacted by uremic metabolites; however, a screen of matrix dehydrogenases indicated that malate and glutamate dehydrogenases were impaired by some, but not all, uremic metabolites. Assessments of electron transport system enzymes indicated that uremic metabolites significantly impair complex III and IV. Uremic metabolites resulted in increased JH2O2 under glutamate/malate, pyruvate/malate, and succinate conditions across multiple levels of energy demand (all P < 0.05, n = 4/group). Disruption of mitochondrial OXPHOS was confirmed by decreased respiratory capacity and elevated superoxide production in cultured myotubes. These findings provide direct evidence that uremic metabolites negatively impact skeletal muscle mitochondrial energetics, resulting in decreased energy transfer, impaired complex III and IV enzyme activity, and elevated oxidant production.


Subject(s)
Electron Transport/physiology , Mitochondria, Muscle/metabolism , Muscle, Skeletal/metabolism , Oxidoreductases/metabolism , Animals , Male , Mice, Inbred C57BL , Mitochondria/metabolism , Muscle Fibers, Skeletal/metabolism , Oxidative Phosphorylation , Oxygen Consumption/physiology , Renal Insufficiency, Chronic/metabolism
15.
J Appl Physiol (1985) ; 125(3): 697-705, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29745802

ABSTRACT

The decline in stroke volume (SV) during exercise in the heat has been attributed to either an increase in cutaneous blood flow (CBF) that reduces venous return or an increase in heart rate (HR) that reduces cardiac filling time. However, the evidence supporting each mechanism arises under experimental conditions with different skin temperatures (Tsk; e.g., ≥38°C vs. ≤36°C, respectively). We systematically studied cardiovascular responses to progressively increased Tsk (32°C-39°C) with narrowing of the core-to-skin gradient during moderate intensity exercise. Eight men cycled at 63 ± 1% peak oxygen consumption for 20-30 min. Tsk was manipulated by having subjects wear a water-perfused suit that covered most of the body and maintained Tsk that was significantly different between trials and averaged 32.4 ± 0.2, 35.5 ± 0.1, 37.5 ± 0.1, and 39.5 ± 0.1°C, respectively. The graded heating of Tsk ultimately produced a graded elevation of esophageal temperature (Tes) at the end of exercise. Incrementally increasing Tsk resulted in a graded increase in HR and a graded decrease in SV. CBF reached a similar average plateau value in all trials when Tes was above ~38°C, independent of Tsk. Tsk had no apparent effect on forearm venous volume (FVV). In conclusion, the CBF and FVV responses suggest no further pooling of blood in the skin when Tsk is increased from 32.4°C to 39.5°C. The decrease in SV during moderate intensity exercise when heating the skin to high levels appears related to an increase in HR and not an increase in CBF. NEW & NOTEWORTHY This study systematically investigated the effect of increasing skin temperature (Tsk) to high levels on cardiovascular responses during moderate intensity exercise. We conclude that the declines in stroke volume were related to the increases in heart rate but not the changes in cutaneous blood flow (CBF) and forearm venous volume (FVV) during moderate intensity exercise when Tsk increased from ~32°C to ~39°C. High Tsk (≥38°C) did not further elevate CBF and FVV compared with lower Tsk during moderate intensity exercise.


Subject(s)
Body Temperature Regulation/physiology , Cardiovascular Physiological Phenomena , Exercise/physiology , Skin Temperature/physiology , Adult , Anaerobic Threshold/physiology , Bicycling , Body Weight , Esophagus/physiology , Female , Forearm/blood supply , Heart Rate/physiology , Humans , Male , Regional Blood Flow/physiology , Stroke Volume
SELECTION OF CITATIONS
SEARCH DETAIL
...