Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 18(23): 15154-15166, 2024 Jun 11.
Article in English | MEDLINE | ID: mdl-38808726

ABSTRACT

Platinum ditelluride (1T-PtTe2) is a two-dimensional (2D) topological semimetal with a distinctive band structure and flexibility of van der Waals integration as a promising candidate for future electronics and spintronics. Although the synthesis of large-scale, uniform, and highly crystalline films of 2D semimetals system is a prerequisite for device application, the synthetic methods meeting these criteria are still lacking. Here, we introduce an approach to synthesize highly oriented 2D topological semimetal PtTe2 using a thermally assisted conversion called tellurization, which is a cost-efficient method compared to the other epitaxial deposition methods. We demonstrate that achieving highly crystalline 1T-PtTe2 using tellurization is not dependent on epitaxy but rather relies on two critical factors: (i) the crystallinity of the predeposited platinum (Pt) film and (ii) the surface coverage ratio of the Pt film considering lateral lattice expansion during transformation. By optimizing the surface coverage ratio of the epitaxial Pt film, we successfully obtained 2 in. wafer-scale uniformity without in-plane misalignment between antiparallelly oriented domains. The electronic band structure of 2D topological PtTe2 is clearly resolved in momentum space, and we observed an interesting 6-fold gapped Dirac cone at the Fermi surface. Furthermore, ultrahigh electrical conductivity down to ∼3.8 nm, which is consistent with that of single crystal PtTe2, was observed, proving its ultralow defect density.

2.
Nano Lett ; 23(16): 7273-7278, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37552567

ABSTRACT

Copper-based high-temperature superconductors share a common feature in their crystal structure, which is the presence of a CuO2 plane, where superconductivity takes place. Therefore, important questions arise as to whether superconductivity can exist in a single layer of the CuO2 plane and, if so, how such superconductivity in a single CuO2 plane differs from that in a bulk cuprate system. To answer these questions, studies of the superconductivity in cuprate monolayers are necessary. In this study, we constructed a heterostructure system with a La2-xSrxCuO4 (LSCO) monolayer containing a single CuO2 plane and measured the resulting electronic structures. Monolayer LSCO has metallic and bulk-like electronic structures. The hole doping ratio of the monolayer LSCO is found to depend on the underlying buffer layer due to the interface effect. Our work will provide a platform for research into ideal two-dimensional cuprate systems.

3.
Nat Commun ; 14(1): 3572, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37328474

ABSTRACT

Hund's rule coupling (J) has attracted much attention recently for its role in the description of the novel quantum phases of multi-orbital materials. Depending on the orbital occupancy, J can lead to various intriguing phases. However, experimental confirmation of the orbital occupancy dependency has been difficult as controlling the orbital degrees of freedom normally accompanies chemical inhomogeneities. Here, we demonstrate a method to investigate the role of orbital occupancy in J related phenomena without inducing inhomogeneities. By growing SrRuO3 monolayers on various substrates with symmetry-preserving interlayers, we gradually tune the crystal field splitting and thus the orbital degeneracy of the Ru t2g orbitals. It effectively varies the orbital occupancies of two-dimensional (2D) ruthenates. Via in-situ angle-resolved photoemission spectroscopy, we observe a progressive metal-insulator transition (MIT). It is found that the MIT occurs with orbital differentiation: concurrent opening of a band insulating gap in the dxy band and a Mott gap in the dxz/yz bands. Our study provides an effective experimental method for investigation of orbital-selective phenomena in multi-orbital materials.


Subject(s)
Research Design , Sarcomeres , Photoelectron Spectroscopy
4.
Adv Mater ; 35(15): e2208833, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36739615

ABSTRACT

Interfaces between dissimilar correlated oxides can offer devices with versatile functionalities, and great efforts have been made to manipulate interfacial electronic phases. However, realizing such phases is often hampered by the inability to directly access the electronic structure information; most correlated interfacial phenomena appear within a few atomic layers from the interface. Here, atomic-scale epitaxy and photoemission spectroscopy are utilized to realize the interface control of correlated electronic phases in atomic-scale ruthenate-titanate heterostructures. While bulk SrRuO3 is a ferromagnetic metal, the heterointerfaces exclusively generate three distinct correlated phases in the single-atomic-layer limit. The theoretical analysis reveals that atomic-scale structural proximity effects yield Fermi liquid, Hund metal, and Mott insulator phases in the quantum-confined SrRuO3 . These results highlight the extensive interfacial tunability of electronic phases, hitherto hidden in the atomically thin correlated heterostructure. Moreover, this experimental platform suggests a way to control interfacial electronic phases of various correlated materials.

5.
Nano Lett ; 23(3): 1036-1043, 2023 Feb 08.
Article in English | MEDLINE | ID: mdl-36716295

ABSTRACT

The oxide interfaces between materials with different structural symmetries have been actively studied due to their novel physical properties. However, the investigation of intriguing interfacial phenomena caused by the oxygen octahedral tilt (OOT) proximity effect has not been fully exploited, as there is still no clear understanding of what determines the proximity length and what the underlying control mechanism is. Here, we achieved scalability of the OOT proximity effect in SrRuO3 (SRO) by epitaxial strain near the SRO/SrTiO3 heterointerface. We demonstrated that the OOT proximity length scale of SRO is extended from 4 unit cells to 14 unit cells by employing advanced scanning transmission electron microscopy. We also suggest that this variation may originate from changes in phonon dispersions due to electron-phonon coupling in SRO. This study will provide in-depth insights into the structural gradients of correlated systems and facilitate potential device applications.

6.
Small Methods ; 6(11): e2200880, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36250995

ABSTRACT

Ruddlesden-Popper oxides (A2 BO4 ) have attracted significant attention regarding their potential application in novel electronic and energy devices. However, practical uses of A2 BO4 thin films have been limited by extended defects such as out-of-phase boundaries (OPBs). OPBs disrupt the layered structure of A2 BO4 , which restricts functionality. OPBs are ubiquitous in A2 BO4 thin films but inhomogeneous interfaces make them difficult to suppress. Here, OPBs in A2 BO4 thin films are suppressed using a novel method to control the substrate surface termination. To demonstrate the technique, epitaxial thin films of cuprate superconductor La2- x Srx CuO4 (x = 0.15) are grown on surface-reconstructed LaSrAlO4 substrates, which are terminated with self-limited perovskite double layers. To date, La2- x Srx CuO4 thin films are grown on LaSrAlO4 substrates with mixed-termination and exhibit multiple interfacial structures resulting in many OPBs. In contrast, La2- x Srx CuO4 thin films grown on surface-reconstructed LaSrAlO4 substrates energetically favor only one interfacial structure, thus inhibiting OPB formation. OPB-suppressed La2- x Srx CuO4 thin films exhibit significantly enhanced superconducting properties compared with OPB-containing La2- x Srx CuO4 thin films. Defect engineering in A2 BO4 thin films will allow for the elimination of various types of defects in other complex oxides and facilitate next-generation quantum device applications.

7.
Nat Commun ; 12(1): 6171, 2021 Oct 26.
Article in English | MEDLINE | ID: mdl-34702805

ABSTRACT

Correlated electrons in transition metal oxides exhibit a variety of emergent phases. When transition metal oxides are confined to a single-atomic-layer thickness, experiments so far have shown that they usually lose diverse properties and become insulators. In an attempt to extend the range of electronic phases of the single-atomic-layer oxide, we search for a metallic phase in a monolayer-thick epitaxial SrRuO3 film. Combining atomic-scale epitaxy and angle-resolved photoemission measurements, we show that the monolayer SrRuO3 is a strongly correlated metal. Systematic investigation reveals that the interplay between dimensionality and electronic correlation makes the monolayer SrRuO3 an incoherent metal with orbital-selective correlation. Furthermore, the unique electronic phase of the monolayer SrRuO3 is found to be highly tunable, as charge modulation demonstrates an incoherent-to-coherent crossover of the two-dimensional metal. Our work emphasizes the potentially rich phases of single-atomic-layer oxides and provides a guide to the manipulation of their two-dimensional correlated electron systems.

8.
Phys Rev Lett ; 127(25): 256401, 2021 Dec 17.
Article in English | MEDLINE | ID: mdl-35029413

ABSTRACT

We performed in situ angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES (SARPES) experiments to investigate the relationship between electronic band structures and ferromagnetism in SrRuO_{3} (SRO) thin films. Our high quality ARPES and SARPES results show clear spin-lifted band structures. The spin polarization is strongly dependent on momentum around the Fermi level, whereas it becomes less dependent at high-binding energies. This experimental observation matches our dynamical mean-field theory results very well. As temperature increases from low to the Curie temperature, spin-splitting gap decreases and band dispersions become incoherent. Based on the ARPES study and theoretical calculation results, we found that SRO possesses spin-dependent electron correlations in which majority and minority spins are localized and itinerant, respectively. Our finding explains how ferromagnetism and electronic structure are connected, which has been under debate for decades in SRO.

SELECTION OF CITATIONS
SEARCH DETAIL
...