Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-25566184

ABSTRACT

Podocytes are lost by detachment from the GBM as viable cells; details are largely unknown. We studied this process in the rat after growth stimulation with FGF-2. Endothelial and mesangial cells responded by hyperplasia, podocytes underwent hypertrophy, but, in the long run, developed various changes that could either be interpreted showing progressing stages in detachment from the GBM or stages leading to a tighter attachment by foot process effacement (FPE). This occurred in microdomains within the same podocyte; thus, features of detachment and of reinforced attachment may simultaneously be found in the same podocyte. (1) Initially, hypertrophied podocytes underwent cell body attenuation and formed large pseudocysts, i.e., expansions of the subpodocyte space. (2) Podocytes entered the process of FPE starting with the retraction of foot processes (FPs) and the replacement of the slit diaphragm by occluding junctions, thereby sealing the filtration slits. Successful completion of this process led to broad attachments of podocyte cell bodies to the GBM. (3) Failure of sealing the slits led to gaps of varying width between retracting FPs facilitating the outflow of the filtrate from the GBM. (4) Since those gaps are frequently overarched by broadened primary processes, the drainage of the filtrate into the Bowman's space may be hindered leading to the formation of small pseudocysts associated with bare areas of GBM. (5) The merging of pseudocysts created a system of communicating chambers through which the filtrate has to pass to reach Bowman's space. Multiple flow resistances in series likely generated an expansile force on podocytes contributing to detachment. (6) Such a situation appears to proceed to complete disconnection generally of a group of podocytes owing to the junctional connections between them. (7) Since such groups of detaching podocytes generally make contact to parietal cells, they start the formation of tuft adhesions to Bowman's capsule.

2.
Am J Pathol ; 177(2): 632-43, 2010 Aug.
Article in English | MEDLINE | ID: mdl-20616344

ABSTRACT

We recently showed in a tetracycline-controlled transgenic mouse model that overexpression of transforming growth factor (TGF)-beta1 in renal tubules induces widespread peritubular fibrosis and focal degeneration of nephrons. In the present study we have analyzed the mechanisms underlying these phenomena. The initial response to tubular cell-derived TGF-beta1 consisted of a robust proliferation of peritubular cells and deposition of collagen. On sustained expression, nephrons degenerated in a focal pattern. This process started with tubular dedifferentiation and proceeded to total decomposition of tubular cells by autophagy. The final outcome was empty collapsed remnants of tubular basement membrane embedded into a dense collagenous fibrous tissue. The corresponding glomeruli survived as atubular remnants. Thus, TGF-beta1 driven autophagy may represent a novel mechanism of tubular decomposition. The fibrosis seen in between intact tubules and in areas of tubular decomposition resulted from myofibroblasts that were derived from local fibroblasts. No evidence was found for a transition of tubular cells into myofibroblasts. Neither tracing of injured tubules in electron micrographs nor genetic tagging of tubular epithelial cells revealed cells transgressing the tubular basement membrane. In conclusion, overexpression of TGF-beta1 in renal tubules in vivo induces interstitial proliferation, tubular autophagy, and fibrosis, but not epithelial-to-mesenchymal transition.


Subject(s)
Autophagy/physiology , Epithelial Cells/physiology , Epithelial-Mesenchymal Transition/physiology , Kidney Tubules , Kidney , Transforming Growth Factor beta1/metabolism , Animals , Epithelial Cells/ultrastructure , Fibrosis/metabolism , Fibrosis/pathology , Kidney/cytology , Kidney/metabolism , Kidney/pathology , Kidney Tubules/metabolism , Kidney Tubules/ultrastructure , Mice , Mice, Inbred Strains , Mice, Transgenic
3.
Am J Pathol ; 175(5): 1883-95, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19834063

ABSTRACT

The role of vascular endothelial growth factor (VEGF) in renal fibrosis, tubular cyst formation, and glomerular diseases is incompletely understood. We studied a new conditional transgenic mouse system [Pax8-rtTA/(tetO)(7)VEGF], which allows increased tubular VEGF production in adult mice. The following pathology was observed. The interstitial changes consisted of a ubiquitous proliferation of peritubular capillaries and fibroblasts, followed by deposition of matrix leading to a unique kind of fibrosis, ie, healthy tubules amid a capillary-rich dense fibrotic tissue. In tubular segments with high expression of VEGF, cysts developed that were surrounded by a dense network of peritubular capillaries. The glomerular effects consisted of a proliferative enlargement of glomerular capillaries, followed by mesangial proliferation. This resulted in enlarged glomeruli with loss of the characteristic lobular structure. Capillaries became randomly embedded into mesangial nodules, losing their filtration surface. Serum VEGF levels were increased, whereas endogenous VEGF production by podocytes was down-regulated. Taken together, this study shows that systemic VEGF interferes with the intraglomerular cross-talk between podocytes and the endocapillary compartment. It suppresses VEGF secretion by podocytes but cannot compensate for the deficit. VEGF from podocytes induces a directional effect, attracting the capillaries to the lobular surface, a relevant mechanism to optimize filtration surface. Systemic VEGF lacks this effect, leading to severe deterioration in glomerular architecture, similar to that seen in diabetic nephropathy.


Subject(s)
Cysts , Glomerulonephritis , Kidney Diseases , Kidney Glomerulus , Kidney Tubules , Vascular Endothelial Growth Factor A/metabolism , Animals , Capillaries/cytology , Capillaries/metabolism , Capillaries/pathology , Cysts/metabolism , Cysts/pathology , Fibrosis/metabolism , Fibrosis/pathology , Glomerulonephritis/metabolism , Glomerulonephritis/pathology , Humans , In Situ Hybridization , Kidney Diseases/metabolism , Kidney Diseases/pathology , Kidney Glomerulus/cytology , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Kidney Tubules/cytology , Kidney Tubules/metabolism , Kidney Tubules/pathology , Mice , Mice, Transgenic , Podocytes/cytology , Podocytes/metabolism , Podocytes/pathology
4.
J Am Soc Nephrol ; 18(6): 1824-34, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17460141

ABSTRACT

Sustained proteinuria and tubulointerstitial damage have been closely linked with progressive renal failure. Upon excess protein endocytosis, tubular epithelial cells are thought to produce mediators that promote inflammation, tubular degeneration, and fibrosis. This concept was tested in a transgenic mouse model with megalin deficiency. Application of an anti-glomerular basement membrane serum to transgenic megalin-deficient mice [Cre(+)/GN] and megalin-positive littermates [Cre(-)/GN] produced the typical glomerulonephritis (GN) with heavy proteinuria in both groups. Tubulointerstitial damages correlated closely with glomerular damages in pooled Cre(+)/GN and Cre(-)/GN mice. Owing to a mosaic pattern of megalin expression in the mutant mice, Cre(+)/GN kidneys permitted side-by-side analysis of megalin-deficient and megalin-positive tubules in the same kidney. Protein endocytosis was found only in megalin-positive cells. TGF-beta, intercellular adhesion molecule, vascular cellular adhesion molecule, endothelin-1, and cell proliferation were high in megalin-positive cells, whereas apoptosis, heat-shock protein 25, and osteopontin were enhanced in megalin-deficient cells. No fibrotic changes were associated with either phenotype. Tubular degeneration with interstitial inflammation was found only in nephrons with extensive crescentic lesions at the glomerulotubular junction. In sum, enhanced protein endocytosis indeed led to an upregulation of profibrotic mediators in a megalin-dependent way; however, there was no evidence that endocytosis played a pathogenetic role in the development of the tubulointerstitial disease.


Subject(s)
Kidney Tubules, Proximal/metabolism , Low Density Lipoprotein Receptor-Related Protein-2/genetics , Low Density Lipoprotein Receptor-Related Protein-2/metabolism , Nephritis, Interstitial/metabolism , Nephritis, Interstitial/physiopathology , Animals , Apoptosis/physiology , Chemokine CCL2/metabolism , Endocytosis/physiology , Female , Heat-Shock Proteins/metabolism , Intercellular Adhesion Molecule-1/metabolism , Kidney Glomerulus/metabolism , Kidney Glomerulus/pathology , Kidney Glomerulus/ultrastructure , Kidney Tubules, Proximal/pathology , Mice , Mice, Knockout , Microscopy, Electron , Molecular Chaperones , Mosaicism , Neoplasm Proteins/metabolism , Nephritis, Interstitial/pathology , Osteopontin/metabolism , Proteinuria/metabolism , Proteinuria/pathology , Proteinuria/physiopathology , Vascular Cell Adhesion Molecule-1/metabolism
5.
Nephrol Dial Transplant ; 21(3): 591-7, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16326737

ABSTRACT

BACKGROUND: The availability of genetically modified mice has increased the need for relevant mouse models of renal disease, but widely used C57BL/6 mice often show resistance to proteinuria. 129/Sv mice are considered more sensitive to certain renal models. Albumin overload, an important model of proteinuric disease, induces marked proteinuria in rats but barely in C57BL/6 mice. We hypothesized that albumin overload would induce more proteinuria in 129S2/Sv than C57BL/6J mice. METHODS: Male and female C57BL/6J and 129S2/Sv mice received bovine serum albumin (BSA) for 11 days. Control groups received saline injections. Injected BSA was immunohistochemically localized to study intrarenal handling of overloaded protein. Renal macrophage infiltration (F4/80 immuno-staining) and glomerular ultrastructure (electron microscopy) were assessed. RESULTS: The BSA-treated groups were similarly hyperproteinemic at Day 11 (D11). Proteinuria differed widely. In C57BL/6J mice, it remained unchanged in females but significantly, though mildly, increased in males (from 3+/-1 to 8+/-2 mg/day, P < 0.05). In 129S2/Sv, proteinuria was marked in both males and females (4+/-1 to 59+/-14, and 0.6+/-0.2 to 29+/-9 mg/day, respectively, both P < 0.01). Proteinuria was accompanied by tubulo-interstitial macrophage infiltration in 129S2/Sv mice. Injected BSA was visualized within glomeruli in both strains and in the urinary space and tubules of 129S2/Sv but not C57BL/6J mice, indicating much greater glomerular leakage in the former. No glomerular macrophages or ultra-structural differences were detected. CONCLUSION: There are major strain differences in the proteinuria and renal inflammatory response of mice to albumin overload, which are not due to structural variation in the filtration barrier but possibly to functional differences in glomerular protein permeability.


Subject(s)
Glomerulonephritis/pathology , Proteinuria/metabolism , Animals , Disease Models, Animal , Female , Glomerulonephritis/chemically induced , Glomerulonephritis/metabolism , Immunohistochemistry , Injections , Kidney Glomerulus/ultrastructure , Kidney Tubules/ultrastructure , Macrophages/pathology , Male , Mice , Mice, Inbred C57BL , Microscopy, Electron , Proteinuria/chemically induced , Proteinuria/pathology , Risk Factors , Serum Albumin/administration & dosage , Serum Albumin/toxicity , Sex Factors
6.
Kidney Blood Press Res ; 28(1): 1-7, 2005.
Article in English | MEDLINE | ID: mdl-15383720

ABSTRACT

The nonmetabolizable glucose analogue [(3)H]-2-deoxy-D-glucose ((3)H-2DG) was used to study glucose transport in cultured rat podocytes. Intracellular accumulation of (3)H-2DG was linear up to 20 min and was inhibited by cytochalasin B (80% inhibition) and by phlorizin (20% inhibition). Pretreatment with insulin stimulated the (3)H-2DG uptake 1.5-fold. A Hill analysis of the rate of glucose transport yielded a V(max) value of approximately 10 mM and S(0.5)of 7.8 mM. The value h = 1.0 for a Hill coefficient confirmed that glucose uptake exhibited a Michaelis-Menten kinetics. Transporters GLUT2 and GLUT4 were expressed in over 90% podocytes. Of the GLUT2- and GLUT4-expressing cells, approximately one-fourth expressed the membrane-bound fraction. We conclude that cultured rat podocytes possess a differentiated glucose transport system consisting chiefly of facilitative GLUT2 and GLUT4 transporters. It seems likely that a sodium-dependent glucose cotransporter may also be present in these cells.


Subject(s)
Glucose/metabolism , Podocytes/metabolism , Animals , Antimetabolites/pharmacology , Biological Transport/drug effects , Biological Transport/physiology , Cells, Cultured , Deoxyglucose/pharmacology , Female , Glucose Transporter Type 2/metabolism , Glucose Transporter Type 4/metabolism , Hypoglycemic Agents/pharmacology , Insulin/pharmacology , Podocytes/cytology , Rats , Rats, Wistar
7.
J Am Soc Nephrol ; 15(6): 1475-87, 2004 Jun.
Article in English | MEDLINE | ID: mdl-15153558

ABSTRACT

Angiotensin II (AngII) is a critical determinant of glomerular function involving both hemodynamic and pressure-independent effects that are insufficiently understood. A novel transgenic rat (TGR) model with overexpression of the human AngII type 1 receptor (hAT1) in podocytes was developed to study the consequences of an increased AT1 signaling on the structure and function of the glomerular filter. Use of the nephrin promoter to target the podocytes resulted in an expression of the hAT1 at a level roughly two times higher than the endogenous AT1 throughout life. All male TGR developed significant albuminuria starting at 8 to 15 wk of age; systolic BP was not elevated. More or less concurrently, structural changes at the glomerulus were encountered, starting with ubiquitous formation of pseudocysts at podocytes, followed by foot process effacement and local detachments. This damage progressed to nephron loss via the well known pathway typical for classic focal segmental glomerulosclerosis. The structural changes significantly correlated with age (r(2) = 0.76) and urinary albumin excretion (r(2) = 0.70). The data provide direct evidence that increased AT1 signaling in podocytes leads to protein leakage and structural podocyte damage progressing to focal segmental glomerulosclerosis.


Subject(s)
Glomerulosclerosis, Focal Segmental/metabolism , Receptor, Angiotensin, Type 1/biosynthesis , Albuminuria/metabolism , Animals , Animals, Genetically Modified , Blotting, Northern , Cell Membrane/metabolism , DNA, Complementary/metabolism , Dose-Response Relationship, Drug , Glomerulosclerosis, Focal Segmental/genetics , Humans , Immunohistochemistry , In Situ Hybridization , Kidney/pathology , Kidney Glomerulus/metabolism , Kidney Tubules/metabolism , Kinetics , Lasers , Ligands , Microscopy, Electron , Microscopy, Electron, Scanning , Perfusion , Phenotype , Promoter Regions, Genetic , Protein Structure, Tertiary , RNA/metabolism , Rats , Rats, Sprague-Dawley , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction , Time Factors , Tissue Distribution , Transgenes
8.
J Am Soc Nephrol ; 12(10): 2060-2071, 2001 Oct.
Article in English | MEDLINE | ID: mdl-11562404

ABSTRACT

Although experimental crescentic glomerulonephritis starts with an endocapillary inflammation, the crescents themselves seem to originate from the proliferation of parietal epithelial cells (PEC). In this study, an attempt was made to disclose a link between the two processes by a morphologic analysis of early stages of the disease. Mice were immunized with rabbit IgG in complete Freund's adjuvant on day -6. At day 0, they received an intravenous injection of a rabbit antiglomerular basement membrane serum. On days 3, 6, and 10, the kidneys were fixed by vascular perfusion for examination by light and electron microscopy. On day 3, morphologic alterations affected mainly the endocapillary compartment; most podocytes appeared to be intact. On day 6, alterations of podocytes were widespread, including foot process effacement and prominent microvillous transformation, and some crescents were found. On day 10, crescents were found in 40% of glomeruli. The most surprising finding was podocytes that adhered to both the glomerular basement membrane and the parietal basement membrane, thus forming bridges between the tuft and Bowman's capsule. Those podocyte bridges were sparse on day 3 but were regularly encountered on days 6 and 10 in glomeruli without crescents and also as a component of crescents. They were interposed between PEC and later between the cells of a crescent without formation of junctional connection with these cells. It is proposed that the spreading of podocytes on the parietal basement membrane represents a lesion of the parietal epithelium and that this process initiates the proliferation of PEC to form a crescent.


Subject(s)
Glomerulonephritis/pathology , Kidney Glomerulus/pathology , Animals , Basement Membrane/pathology , Female , Fluorescent Antibody Technique , Immunohistochemistry , Mice , Mice, Inbred C57BL , Microscopy, Electron , Microscopy, Fluorescence
9.
J Am Soc Nephrol ; 12(3): 496-506, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11181797

ABSTRACT

In two genetic models of "classic" focal segmental glomerulosclerosis (FSGS), the Milan normotensive and the Fawn-hooded hypertensive rats, tracer studies were performed to test the hypothesis that misdirected glomerular filtration and peritubular filtrate spreading are relevant mechanisms that contribute to nephron degeneration in this disease. Two exogenous tracers, lissamine green and horse spleen ferritin, were administered by intravenous injection and subsequently traced histologically in serial kidney sections. In contrast to control rats, both tracers in kidneys of Milan normotensive and Fawn-hooded hypertensive rats with established FSGS were found to accumulate extracellularly at the following sites: (1) within tuft adhesions to Bowman's capsule and associated paraglomerular spaces, (2) at the glomerulotubular junction contained within extensions of the paraglomerular spaces onto the tubule, and (3) within subepithelial peritubular spaces eventually encircling the entire proximal convolution of an affected nephron. This distribution strongly suggests the existence of misdirected filtration into tuft adhesions to Bowman's capsule and subsequent spreading of the filtrate around the entire circumference of a glomerulus and, alongside the glomerulotubular junction, onto the outer aspect of the corresponding tubule. This leads to an interstitial response that consists of the formation of a barrier of sheet-like fibroblast processes around the affected nephron, which confines the filtrate spreading and, subsequently, the destructive process to the affected nephron. No evidence was found that either misdirected filtration and peritubular filtrate spreading themselves or the associated tubulo-interstitial process led to the transfer of the injury from an affected nephron to an unaffected nephron. It is concluded that in the context of FSGS development, misdirected filtration and peritubular filtrate spreading are important damaging mechanisms that underlie the extension of glomerular injury to the corresponding tubulointerstitium, thus leading finally to degeneration of both the glomerulus and the tubule of a severely injured nephron.


Subject(s)
Glomerulosclerosis, Focal Segmental/pathology , Animals , Ferritins/pharmacokinetics , Ferrocyanides/pharmacokinetics , Glomerulosclerosis, Focal Segmental/complications , Glomerulosclerosis, Focal Segmental/genetics , Glomerulosclerosis, Focal Segmental/metabolism , Hypertension/complications , Hypertension/genetics , Lissamine Green Dyes/pharmacokinetics , Microscopy, Electron , Nephrons/metabolism , Nephrons/pathology , Rats , Rats, Mutant Strains , Rats, Wistar , Tissue Distribution
SELECTION OF CITATIONS
SEARCH DETAIL
...