Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
iScience ; 27(4): 109487, 2024 Apr 19.
Article in English | MEDLINE | ID: mdl-38550996

ABSTRACT

Loss of PKHD1-gene function causes autosomal recessive polycystic kidney disease (ARPKD) characterized by bilateral severely enlarged kidneys and congenital liver fibrosis requiring kidney replacement therapy most frequently during childhood. Studies using renal tissue from ARPKD patients suggest cyst promotion by suppressed hippo activity and enhanced Src/STAT3-signaling. We address renal homeostasis in female Pkhd1-knockout mice, aged 3 to 9 months, and observe features in common with late-onset ARPKD. Pkhd1-knockout animals show significant increase in kidney and liver weight with preserved organ function. Kidney cyst formation of the S3 segment is accompanied by macrophage recruitment and fibrotic remodeling. Cystic epithelia display increased proliferation, high levels of nuclear YAP/TAZ, and enhanced apoptosis. Y705-phosphorylated STAT3 is strongly enhanced in nuclei of cyst-lining epithelia. In this Pkhd1-deficiency model, stressed cystic epithelia expose the altered signaling pattern and disease-related mechanisms deemed relevant to human ARPKD, and thus may allow identification of therapeutic targets of this disease.

2.
Int J Mol Sci ; 22(21)2021 Oct 21.
Article in English | MEDLINE | ID: mdl-34768779

ABSTRACT

Zebrafish have come into focus to model cerebellar diseases such as spinocerebellar ataxias (SCAs), which is caused by an expansion of translated CAG repeats in several unrelated genes. In spinocerebellar ataxia type 1 (SCA1), gain-of-function in the mutant ATXN1 contributes to SCA1's neuropathy. Human ATXN1 and its paralog ATXN1L are chromatin-binding factors, act as transcriptional repressors, and have similar expression patterns. However, little is known about atxn1 genes in zebrafish. Recently, two family members, atxn1a and atxn1b, were identified as duplicate orthologs of ATXN1, as was atxn1l, the ortholog of ATXN1L. In this study, we analyzed the phylogenetic relationship of the atxn1 family members in zebrafish, compared their genetic structures, and verified the predicted transcripts by both RT-PCR and whole-mount in situ hybridization. All three genes, atxn1a, atxn1b, and atxn1l, show overlapping, but also distinct, expression domains during embryonic and larval development. While atxn1a and atxn1l display similar spatiotemporal embryonic expression, atxn1b expression is initiated during the onset of brain development and is predominantly expressed in the cerebellum throughout zebrafish development. These results provide new insights into atxn1 genes and their expression patterns in zebrafish during embryonic and late-larval development and may contribute importantly to future experiments in disease modeling of SCAs.


Subject(s)
Ataxin-1/genetics , Ataxin-1/physiology , Animals , Ataxin-1/metabolism , Cerebellum/metabolism , Gene Expression/genetics , Gene Expression Regulation, Developmental/genetics , Larva/metabolism , Nerve Tissue Proteins/metabolism , Nuclear Proteins/metabolism , Phylogeny , Spatio-Temporal Analysis , Spinocerebellar Ataxias/genetics , Structure-Activity Relationship , Zebrafish/embryology , Zebrafish/metabolism , Zebrafish Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...