Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 276(49): 45882-7, 2001 Dec 07.
Article in English | MEDLINE | ID: mdl-11590138

ABSTRACT

The thrombospondin (TSP) family of extracellular glycoproteins consists of five members in vertebrates, TSP1 to -4 and TSP5/cartilage oligomeric matrix protein, and a single member in Drosophila. TSPs are modular multimeric proteins. The C-terminal end of a monomer consists of 3-6 EGF-like modules; seven tandem 23-, 36-, or 38-residue aspartate-rich, Ca(2+)-binding repeats; and an approximately 230-residue C-terminal sequence. The Ca(2+)-binding repeats and C-terminal sequence are spaced almost exactly the same in different TSPs and share many blocks of identical residues. We studied the C-terminal portion of human TSP2 from the third EGF-like module through the end of the protein (E3CaG2). E3CaG2, CaG2 lacking the EGF module, and Ca2 composed of only the Ca(2+)-binding repeats were expressed using recombinant baculoviruses and purified from conditioned media of insect cells. As previously described for intact TSP1, E3CaG2 bound Ca(2+) in a cooperative manner as assessed by equilibrium dialysis, and its circular dichroism spectrum was sensitive to the presence of Ca(2+). Mass spectrometry of the recombinant proteins digested with endoproteinase Asp-N revealed that disulfide pairing of the 18 cysteines in the Ca(2+)-binding repeats and C-terminal sequence is sequential, i.e. a 1-2, 3-4, 5-6, etc., pattern.


Subject(s)
Disulfides/metabolism , Thrombospondins/metabolism , Amino Acid Sequence , Calcium/metabolism , Circular Dichroism , Electrophoresis, Polyacrylamide Gel , Humans , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Conformation , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , Spectrometry, Fluorescence , Thrombospondins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...