Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 491
Filter
1.
J Psychiatry Neurosci ; 49(3): E192-E207, 2024.
Article in English | MEDLINE | ID: mdl-38816029

ABSTRACT

BACKGROUND: Recent studies have identified empathy deficit as a core impairment and diagnostic criterion for people with autism spectrum disorders; however, the improvement of empathy focuses primarily on behavioural interventions without the target regulation. We sought to compare brain regions associated with empathy-like behaviours of fear and pain, and to explore the role of the oxytocin-oxytocin receptor system in fear empathy. METHODS: We used C57BL mice to establish 2 models of fear empathy and pain empathy. We employed immunofluorescence histochemical techniques to observe the expression of c-Fos throughout the entire brain and subsequently quantified the number of c-Fos-positive cells in different brain regions. Furthermore, we employed chemogenetic technology to selectively manipulate these neurons in Oxt-Cre-/+ mice to identify the role of oxytocin in this process. RESULTS: The regions activated by fear empathy were the anterior cingulate cortex, basolateral amygdala, nucleus accumbens, paraventricular nucleus (PVN), lateral habenula, and ventral and dorsal hippocampus. The regions activated by pain empathy were the anterior cingulate cortex, basolateral amygdala, nucleus accumbens, and lateral habenula. We found that increasing the activity of oxytocin neurons in the PVN region enhanced the response to fear empathy. This enhancement may be mediated through oxytocin receptors. LIMITATIONS: This study included only male animals, which restricts the broader interpretation of the findings. Further investigations on circuit function need to be conducted. CONCLUSION: The brain regions implicated in the regulation of fear and pain empathy exhibit distinctions; the activity of PVN neurons was positively correlated with empathic behaviour in mice. These findings highlight the role of the PVN oxytocin pathway in regulating fear empathy and suggest the importance of oxytocin signalling in mediating empathetic responses.


Subject(s)
Empathy , Fear , Mice, Inbred C57BL , Neurons , Oxytocin , Paraventricular Hypothalamic Nucleus , Animals , Oxytocin/metabolism , Male , Paraventricular Hypothalamic Nucleus/metabolism , Fear/physiology , Empathy/physiology , Neurons/metabolism , Mice , Receptors, Oxytocin/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Pain/physiopathology , Pain/psychology , Mice, Transgenic
2.
J Mater Chem B ; 12(23): 5619-5627, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38770837

ABSTRACT

Abnormal neuronal polarity leads to early deficits in Alzheimer's disease (AD) by affecting the function of axons. Precise and rapid evaluation of polarity changes is very important for the early prevention and diagnosis of AD. However, due to the limitations of existing detection methods, the mechanism related to how neuronal polarity changes in AD is unclear. Herein, we reported a ratiometric fluorescent probe characterized by neutral molecule to disclose the polarity changes in nerve cells and the brain of APP/PS1 mice. Cy7-K showed a sensitive and selective ratiometric fluorescence response to polarity. Remarkably, unlike conventional intramolecular charge transfer fluorescent probes, the fluorescence quantum yield of Cy7-K in highly polar solvents is higher than that in low polar solvents due to the transition of neutral quinones to aromatic zwitterions. Using the ratiometric fluorescence imaging, we found that beta-amyloid protein (Aß) inhibits the expression of histone deacetylase 6, thereby increasing the amount of acetylated Tau protein (AC-Tau) and ultimately enhancing cell polarity. There was a high correlation between polarity and AC-Tau. Furthermore, Cy7-K penetrated the blood-brain barrier to image the polarity of different brain regions and confirmed that APP/PS1 mice had higher polarity than Wild-type mice. The probe Cy7-K will be a promising tool for assessing the progression of AD development by monitoring polarity.


Subject(s)
Alzheimer Disease , Fluorescent Dyes , tau Proteins , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/metabolism , Alzheimer Disease/diagnosis , Fluorescent Dyes/chemistry , Fluorescent Dyes/chemical synthesis , Animals , tau Proteins/metabolism , tau Proteins/analysis , Mice , Acetylation , Optical Imaging , Humans , Mice, Transgenic , Molecular Structure
3.
Nutr Hosp ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38804985

ABSTRACT

OBJECTIVE: to analyse the differences in malnutrition assessment between the Global Leadership Initiative on Malnutrition (GLIM) criteria and the Patient-Generated Subjective Global Assessment (PG-SGA) among patients with hepatobiliary and pancreatic malignancies. METHOD: this study was a cross-sectional study and included 126 hospitalised patients who underwent surgery for hepatobiliary and pancreatic malignancies between November 1, 2019 and August 1, 2020. The patients' clinical data were collected, and malnutrition assessments were completed using the different nutritional assessment tools. The consistency of both tools was analysed using Cohen's kappa coefficient. RESULTS: the prevalence of malnutrition showed a difference in diagnosis results between the GLIM criteria (36.51 %) and the PG-SGA (55.56 %). The two methods had moderate consistency (kappa = 0.590, p < 0.01). The sensitivity of a malnutrition diagnosis using a combination of GLIM and PG-SGA was 65.7 % (53.3 % and 76.4 %, respectively), and specificity was 100 % (92 % and 100 %, respectively). When malnutrition was evaluated using only PG-SGA, sensitivity was 88.9 % (95 % confidence interval (CI) 63.9 % to 98.1 %), whereas when only the GLIM score was used for malnutrition evaluation, sensitivity was 98.2 % (95 % CI, 92.8 % to 99.7 %). In addition, the PG-SGA score and the GLIM score had significant correlations. CONCLUSION: GLIM performed better than PG-SGA in the correlation analysis of nutritional indicators. GLIM is more suitable for patients with hepatobiliary and pancreatic malignancies than PG-SGA.

4.
Opt Lett ; 49(8): 2137-2140, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621095

ABSTRACT

Superradiant phase transitions play a fundamental role in understanding the mechanism of collective light-matter interaction at the quantum level. Here we investigate multiple superradiant phases and phase transitions with different symmetry-breaking patterns in a two-mode V-type Dicke model. Interestingly, we show that there exists a quadruple point where one normal phase, one global symmetry-breaking superradiant phase, and two local symmetry-breaking superradiant phases meet. Such a global phase results from the phase competition between two local superradiant phases and cannot occur in the standard Λ- and Ξ-type three-level configurations in quantum optics. Moreover, we exhibit a sequential first-order quantum phase transition from one local to the global again to the other local superradiant phase. Our study opens up a perspective of exploring multilevel quantum critical phenomena with global symmetry breaking.

5.
Front Cell Infect Microbiol ; 14: 1378379, 2024.
Article in English | MEDLINE | ID: mdl-38606295

ABSTRACT

Introduction: Systematic evaluation of long-term outcomes in survivors of H1N1 is still lacking. This study aimed to characterize long-term outcomes of severe H1N1-induced pneumonia and acute respiratory distress syndrome (ARDS). Method: This was a single-center, prospective, cohort study. Survivors were followed up for four times after discharge from intensive care unit (ICU) by lung high-resolution computed tomography (HRCT), pulmonary function assessment, 6-minute walk test (6MWT), and SF-36 instrument. Result: A total of 60 survivors of H1N1-induced pneumonia and ARDS were followed up for four times. The carbon monoxide at single breath (DLCO) of predicted values and the 6MWT results didn't continue improving after 3 months. Health-related quality of life didn't change during the 12 months after ICU discharge. Reticulation or interlobular septal thickening on HRCT did not begin to improve significantly until the 12-month follow-up. The DLCO of predicted values showed negative correlation with the severity degree of primary disease and reticulation or interlobular septal thickening, and a positive correlation with physical functioning. The DLCO of predicted values and reticulation or interlobular septal thickening both correlated with the highest tidal volume during mechanical ventilation. Levels of fibrogenic cytokines had a positive correlation with reticulation or interlobular septal thickening. Conclusion: The improvements in pulmonary function and exercise capacity, imaging, and health-related quality of life had different time phase and impact on each other during 12 months of follow-up. Long-term outcomes of pulmonary fibrosis might be related to the lung injury and excessive lung fibroproliferation at the early stage during ICU admission.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Pneumonia , Respiratory Distress Syndrome , Humans , Prospective Studies , Cohort Studies , Influenza, Human/complications , Quality of Life , Respiratory Distress Syndrome/diagnostic imaging , Survivors
6.
Urolithiasis ; 52(1): 64, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38613668

ABSTRACT

Radiomics and machine learning have been extensively utilized in the realm of urinary stones, particularly in forecasting stone treatment outcomes. The objective of this study was to integrate clinical variables and radiomic features to develop a machine learning model for predicting the stone-free rate (SFR) following percutaneous nephrolithotomy (PCNL). A total of 212 eligible patients who underwent PCNL surgery at the Second Affiliated Hospital of Nanchang University were included in a retrospective analysis. Preoperative clinical variables and non-contrast-enhanced CT images of all patients were collected, and radiomic features were extracted after delineating the stone ROI. Univariate analysis was conducted to identify clinical variables strongly correlated with the stone-free rate after PCNL, and the least absolute shrinkage and selection operator algorithm (lasso regression) was utilized to screen radiomic features. Four supervised machine learning algorithms, including Logistic Regression, Random Forest (RF), Extreme Gradient Boosting (XGBoost), and Gradient Boosting Decision Tree (GBDT), were employed. The clinical variables with strong correlation and screened radiomic features were integrated into the four machine learning algorithms to construct a prediction model, and the receiver operating curve was plotted. The area under the receiver operating curve (AUC), the accuracy rate, the specificity, etc., were used to evaluate the predictive performance of the four models. After analyzing postoperative statistics, the stone-free rate following the procedure was found to be 70.3% (n = 149). Among the various clinical variables examined, factors, such as stone number, stone diameter, stone CT value, stone location, and history of stone surgery, were identified as statistically significant in relation to the stone-free rate after PCNL. A total of 121 radiomic features were extracted, and through lasso regression, 7 features most closely associated with the stone-free rate post-PCNL were identified. The predictive accuracy of different models (Logistic Regression, RF, XGBoost, and GBDT) for determining the stone-free rate after PCNL was evaluated, yielding accuracies of 78.1%, 76.6%, 75.0%, and 73.4%, respectively. The corresponding area under the curve AUC (95%CI) were 0.85 (0.83-0.89), 0.81 (0.76-0.85), 0.82 (0.78-0.85), and 0.77 (0.73-0.81), positioning these models among the top performers in logistic regression prediction. In terms of predictive importance scores, the key factors identified by the logistic regression model were number of stone, zone percentage, stone diameter, and surface area. Similarly, the RF model highlighted number of stone, stone CT value, stone diameter, and surface area as the top predictors. Among the four machine learning models, the logistic regression model demonstrated the highest accuracy and discrimination ability in predicting the stone-free rate following PCNL. In comparison to XGBoost and GBDT, RF also exhibited superior accuracy and a certain level of discrimination ability. However, based on the performance of all four models, logistic regression is more likely to aid in clinical decision-making by assisting clinicians in diagnosing PCNL in patients. This enables us to effectively predict the presence of residual stones post-surgery and ultimately select patients who are suitable candidates for PCNL.


Subject(s)
Nephrolithotomy, Percutaneous , Urinary Calculi , Humans , Radiomics , Retrospective Studies , Machine Learning
7.
Sci Rep ; 14(1): 8156, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38589421

ABSTRACT

The aim of this study was to identify biomarkers associated with the initiation and prognosis of thyroid cancer and elucidate the underlying pathogenic mechanisms. We obtained expression profiles and clinical information from the Cancer Genome Atlas (TCGA)-THCA and three datasets (GSE53157, GSE82208, and GSE76039). The three microarray datasets were combined using Perl and the sva package in R and termed 'merged dataset'. Weighted gene co-expression network analysis (WGCNA) identified 15 gene co-expression modules in the merged dataset and 235 hub genes. Venn diagram analysis revealed 232 overlapping genes between the merged and THCA datasets. Overlapping genes were subjected to gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses. The least absolute shrinkage and selection operator (LASSO) regression identified THEMIS2 as a candidate hub gene. Cox, Kaplan-Meier (K-M) survival and gene set enrichment analysis (GSEA) confirmed the correlation of THEMIS2 with overall survival, its enrichment in immunologic processes, and its association with the p53 and JAK-STAT signaling pathways. Its expression was positively correlated with those of immune checkpoints and the infiltration level of immune cells. Receiver operating characteristic curve (ROC) analysis confirmed that THEMIS2, a diagnostic biomarker, could distinguish between tumor and normal specimens. The nomogram (ROC or DCA) model containing THEMIS2, age, and stage predicted favourable prognoses. Thus, THEMIS2 was a biomarker of immune infiltration and prognosis in thyroid cancer.


Subject(s)
Carcinogens , Thyroid Neoplasms , Humans , Carcinogenesis , Thyroid Neoplasms/genetics , Prognosis , Computational Biology , Biomarkers
8.
Clin Interv Aging ; 19: 613-626, 2024.
Article in English | MEDLINE | ID: mdl-38646591

ABSTRACT

Purpose: This study aims to investigate how the type of anesthesia used during major orthopedic surgery may impact adverse short-term postoperative outcomes depending on frailty. Methods: To conduct this investigation, we recruited individuals aged 65 years and older who underwent major orthopedic surgery between March 2022 and April 2023 at a single institution. We utilized the FRAIL scale to evaluate frailty. The primary focus was on occurrences of death or the inability to walk 60 days after the surgery. Secondary measures included death within 60 days; inability to walk without human assistance at 60 days; death or the inability to walk without human assistance at 30 days after surgery, the first time out of bed after surgery, postoperative blood transfusion, length of hospital stay, hospital costs, and the occurrence of surgical complications such as dislocation, periprosthetic fracture, infection, reoperation, wound complications/hematoma. Results: In a study of 387 old adult patients who had undergone major orthopedic surgery, 41.3% were found to be in a frail state. Among these patients, 262 had general anesthesia and 125 had neuraxial anesthesia. Multifactorial logistic regression analyses showed that anesthesia type was not linked to complications. Instead, frailty (OR 4.04, 95% CI 1.04 to 8.57, P< 0.001), age (OR 1.05, 95% CI 1.00-1.10, P= 0.017), and aCCI scores, age-adjusted Charlson Comorbidity Index, (OR 1.36, 95% CI 1.12 to 1.66, P= 0.002) were identified as independent risk factors for death or new walking disorders in these patients 60 days after surgery. After adjusting for frailty, anesthesia methods was not associated with the development of death or new walking disorders in these patients (P > 0.05). Conclusion: In different frail populations, neuraxial anesthesia is likely to be comparable to general anesthesia in terms of the incidence of short-term postoperative adverse outcomes.


Subject(s)
Frailty , Length of Stay , Orthopedic Procedures , Postoperative Complications , Aged , Aged, 80 and over , Female , Humans , Male , Anesthesia, General/adverse effects , Frail Elderly , Length of Stay/statistics & numerical data , Logistic Models , Orthopedic Procedures/adverse effects , Postoperative Complications/epidemiology , Prospective Studies , Risk Factors
9.
Environ Pollut ; 348: 123893, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38556146

ABSTRACT

Below the boundary layer, the air pollutants have been confirmed to present the decreasing trend with the height in most situaitons. However, the disperiosn rate of air pollutants in the vertical profile is rarely investigated in detail, especially through in-situ measurement. With this consideration, we employed an unmanned aerial vehicle equipped with portable monitoring equipments to scrutinize the vertical distribution of PM2.5. Based on the original data, we found that PM2.5 concentration decreases gradually with altitude below the boundary layer and demonstrated an obvious linear correlation. Therefore, the vertical distribution of PM2.5 was quantified by representing the distribution of PM2.5 with the slope of PM2.5 vertical distribution. We used backward trajectories to reveal the causes of outliers (PM2.5 increasing with altitude), and found that PM2.5 in the high altitude came from the southwest. Besides, the relationship between the vertical distribution of PM2.5 and various meteorological factors was investigated using stepwise regression analysis. The results show that the four meteorological factors most strongly correlated with the slope values are: (a) the difference in relative humidity between the ground and the air; (b) the difference in temperature between the ground and the air; (c) the height of the boundary layer; and (d) the wind speed. The slope values increase with increasing the difference in relative humidity between ground and air and the difference in temperature between the ground and the air, and decrease with increasing boundary layer height and wind speed. According to the Random Forest calculations, the ground-to-air relative humidity difference is the most important at 0.718; the wind speed is the least important at 0.053; and the ground-to-air temperature difference and boundary layer height are 0.140 and 0.088, respectively.


Subject(s)
Air Pollutants , Air Pollution , Particulate Matter/analysis , Unmanned Aerial Devices , Environmental Monitoring/methods , Air Pollutants/analysis , Wind , Air Pollution/analysis , China
10.
Sci Rep ; 14(1): 6583, 2024 03 19.
Article in English | MEDLINE | ID: mdl-38503873

ABSTRACT

We collected thyroid-related hormone index levels, sleep duration, and other basic characteristics of the population with depression from the NHANES 2009-2012 cycles and evaluated the association of Thyroid-Stimulating Hormone Index (TSHI) with sleep duration in the euthyroid population with depression via different analysis methods. We found that the association between TSHI and sleep duration was only found in patients with depression degree < Moderate (score: 1-14) rather than > Moderate group. Among the populations with degree < Moderate (N = 1918), only 4 indexes (parametric Thyroid Feedback Quantile Index, PTFQI, Thyrotroph Thyroxine Resistance Index, TT4RI, Thyroid-Stimulating Hormone TSH, and TSHI) reflecting the sensitivity to thyroid hormones were related to the sleep duration, with a significant non-linear relationship after adjusting for potential confounders (all P < 0.05). Trend analysis indicated that with the level increase of these 4 indexes, the sleep duration increased (all P for trend < 0.001). Further, we found that TSHI was relatively more important among the 4 indexes. Sum up, sensitivity to thyroid hormones is associated with sleep duration in the euthyroid population with depression degree lower than Moderate. Poor sensitivity referred to a longer sleep duration.


Subject(s)
Depression , Sleep Duration , Humans , Nutrition Surveys , Thyroid Hormones , Thyroxine , Thyrotropin
11.
J Am Chem Soc ; 146(11): 7178-7184, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38466344

ABSTRACT

In the field of catalytic asymmetric synthesis, the less-treated path lies in oxidative catalytic asymmetric transformations. The hurdles of pinpointing the appropriate chemical oxidants and addressing their compatibility issues with catalysts and functionalities present significant challenges. Organic electrochemistry, employing traceless electrons for redox reactions, is underscored as a promising solution. However, the commonly used electrolysis in batch cells introduces its own set of challenges, hindering the advancement of electrochemical asymmetric catalysis. Here we introduce a microfluidic electrochemistry platform with single-pass continuous flow reactors that exhibits a wide-ranging applicability to various oxidative asymmetric catalytic transformations. This is exemplified through the sulfenylation of 1,3-dicarbonyls, dehydrogenative C-C coupling, and dehydrogenative alkene annulation processes. The unique properties of microfluidic electrochemical reactors not only eliminate the need for chemical oxidants but also enhance reaction efficiency and reduce the use of additives and electrolytes. These salient features of microfluidic electrochemistry expedite the discovery and development of oxidative asymmetric transformations. In addition, the continuous production facilitated by parallel single-pass reactors ensures straightforward reaction upscaling, removing the necessity for reoptimization across various scales, as evidenced by direct translation from milligram screening to hectogram asymmetric synthesis.

12.
Article in English | MEDLINE | ID: mdl-38521445

ABSTRACT

The MARK2 gene, coding microtubule affinity-regulating kinase or serine/threonine protein kinase, is an important modulator in organism microtubule generation and cell polarity. However, its role in the metamorphosis of insects remains unknown. In this study, we found a conserved miRNA, miR-7-5p, which targets MARK2 to participate in the regulation of the larval-pupal metamorphosis in Galeruca daurica. The dual luciferase reporter assay showed that miR-7-5p interacted with the 3' UTR of MARK2 and repressed its expression. The expression profiling of miR-7-5p and MARK2 displayed an opposite trend during the larval-adult development process. In in-vivo experiments, overexpression of miR-7-5p by injecting miR-7-5p agomir in the final instar larvae down-regulated MARK2 and up-regulated main ecdysone signaling pathway genes including E74, E75, ECR, FTZ-F1 and HR3, which was similar to the results from knockdown of MARK2 by RNAi. In contrast, repression of miR-7-5p by injecting miR-7-5p antagomir obtained opposite effects. Notably, both overexpression and repression of miR-7-5p in the final instar larvae caused abnormal molting and high mortality during the larval-pupal transition, and high mortality during the pupal-adult transition. The 20-hydroxyecdysone (20E) injection experiment showed that 20E up-regulated miR-7-5p whereas down-regulated MARK2. This study reveals that the accurate regulation of miRNAs and their target genes is indispensable for insect metamorphosis.


Subject(s)
Coleoptera , MicroRNAs , Animals , MicroRNAs/genetics , MicroRNAs/metabolism , Coleoptera/genetics , Metamorphosis, Biological/genetics , Ecdysterone/pharmacology , Larva/metabolism
13.
Pest Manag Sci ; 80(7): 3349-3357, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38385645

ABSTRACT

BACKGROUND: Galeruca daurica has become a new pest on the Inner Mongolia grasslands since an abrupt outbreak in 2009 caused serious damage. As a pupa indicator during insect metamorphosis, the early response gene of the ecdysone signaling pathway, Broad-Complex (Br-C), plays a vital role in the growth and development of insects. MicroRNAs (miRNAs) are small non-coding RNAs which mediate various biological activities, but it is unknown whether and how Br-C is regulated by miRNAs. RESULTS: Temporal expression profiles revealed that miR-285 and Br-C basically displayed an opposite trend during larval-adult development, and Br-C was sharply up-regulated on the last day of final-instar larvae while miR-285 was significantly down-regulated. Both dual-luciferase reporter assay and miRNA-mRNA interaction assay indicated that miR-285 interacts with the coding sequence of Br-C and represses its expression. Not only overexpression but also downexpression of miR-285 led to the failure of larval to pupal to adult metamorphosis. In addition, both overexpression of miR-285 and silence of Br-C inhibited the expression of Br-C and other ecdysone signaling pathway genes, including E74, E75, ECR, FTZ-F1, and HR3. On the contrary, suppressing miR-285 obtained opposite results. Further experiments showed that 20-hydroxyecdysone down-regulated miR-285 and up-regulated Br-C and above-mentioned genes, whereas juvenile hormone alalogue (JHA) resulted in opposite effects. CONCLUSION: Our results reveal that miR-285 is involved in mediating the metamorphosis in G. daurica by targeting Br-C in the ecdysone signaling pathway. miR-285 and its target Br-C could be as a potential target for G. daurica management. © 2024 Society of Chemical Industry.


Subject(s)
Insect Proteins , Larva , Metamorphosis, Biological , MicroRNAs , Moths , MicroRNAs/genetics , MicroRNAs/metabolism , Animals , Metamorphosis, Biological/genetics , Larva/growth & development , Larva/genetics , Larva/metabolism , Insect Proteins/genetics , Insect Proteins/metabolism , Moths/growth & development , Moths/genetics , Moths/metabolism , Pupa/growth & development , Pupa/genetics , Pupa/metabolism , Signal Transduction
14.
J Invertebr Pathol ; 203: 108067, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38278342

ABSTRACT

Entomopathogenic nematodes (EPNs) use the chemical cues emitted by insects and insect-damaged plants to locate their hosts. Steinernema carpocapsae, a species of EPN, is an established biocontrol agent used against insect pests. Despite its promising potential, the molecular mechanisms underlying its ability to detect plant volatiles remain poorly understood. In this study, we investigated the response of S. carpocapsae infective juveniles (IJs) to 8 different plant volatiles. Among these, carvone was found to be the most attractive volatile compound. To understand the molecular basis of the response of IJs to carvone, we used RNA-Seq technology to identify gene expression changes in response to carvone treatment. Transcriptome analysis revealed 721 differentially expressed genes (DEGs) between carvone-treated and control groups, with 403 genes being significantly upregulated and 318 genes downregulated. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the responsive DEGs to carvone attraction were mainly involved in locomotion, localization, behavior, response to stimulus, and olfactory transduction. We also identified four upregulated genes of chemoreceptor and response to stimulus that were involved in the response of IJs to carvone attraction. Our results provide insights into the potential transcriptional mechanisms underlying the response of S. carpocapsae to carvone, which can be utilized to develop environmentally friendly strategies for attracting EPNs.


Subject(s)
Cyclohexane Monoterpenes , Insecta , Rhabditida , Animals , Rhabditida/physiology
15.
Exp Ther Med ; 27(1): 5, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38223324

ABSTRACT

A prolonged second stage of vaginal delivery increases the risk of shoulder dystocia, unnecessary episiotomies and cesarean sections. However, no standardized method has been proposed to tackle this issue. The effects of pelvic floor myofascial manipulation intervention during the second stage of labor in primiparas and its prognostic value in neonatal postpartum outcomes remain unknown. In the present study, a total of 60 primiparas who were expecting a vaginal delivery in the Second Affiliated Hospital of Hainan Medical College (Haikou, China) between October 2021 and January 2022 were selected. These women were randomly assigned to a control group (standard intrapartum care) or an experimental group (pelvic floor myofascial manipulation for 15-20 min during the second stage of labor along with standard intrapartum care) using a random number table, with 28 patients in each group. There was no significant difference in age, gestational time or body mass index between the two groups before delivery, indicating that the baseline data were comparable. The second stage of labor duration, forced breath-holding time and postpartum hemorrhage volume in the experimental group were significantly lower than those in the control group. The pain visual analog scale scores, fatigue scores and neonatal Apgar scores in the experimental group were also significantly lower than those in the control group. The rate of episiotomy in the experimental group was lower than that in the control group, but the difference was not statistically significant. In conclusion, pelvic floor myofascial manipulation intervention during the second stage of labor for primiparas with vaginal delivery can reduce the duration of the second stage of labor, the amount of bleeding during labor and the pain during labor. Meanwhile, it has the potential to improve neonatal outcomes.

16.
J Nutr Biochem ; 125: 109570, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38218348

ABSTRACT

High salt diet (HSD) is a risk factor of hypertension and cardiovascular disease. Although clinical data do not clearly indicate the relationship between HSD and the prevalence of Alzheimer's disease (AD), animal experiments have shown that HSD can cause hyperphosphorylation of tau protein and cognition impairment. However, whether HSD can accelerate the progression of AD by damaging the function of neurovascular unit (NVU) in the brain is unclear. Here, we fed APP/PS1 mice (an AD model) or wild-type mice with HSD and found that the chronic HSD feeding increased the activity of enzymes related to tau phosphorylation, which led to tau hyperphosphorylation in the brain. HSD also aggravated the deposition of Aß42 in hippocampus and cortex in the APP/PS1 mice but not in the wild-type mice. Simultaneously, HSD caused the microglia proliferation, low expression of Aqp-4, and high expression of CD31 in the wild-type mice, which were accompanied with the loss of pericytes (PCs) and increase in blood brain barrier (BBB) permeability. As a result, wild-type mice fed with HSD performed poorly in Morris Water Maze and object recognition test. In the APP/PS1 mice, HSD feeding for 8 months worsen the cognition and accompanied the loss of PCs, the activation of glia, the increase in BBB permeability, and the acceleration of calcification in the brain. Our data suggested that HSD feeding induced the AD-like pathology in wild-type mice and aggravated the development of AD-like pathology in APP/PS1 mice, which implicated the tau hyperphosphorylation and NVU dysfunction.


Subject(s)
Alzheimer Disease , Mice , Animals , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Mice, Transgenic , tau Proteins/metabolism , Diet , Cognition , Sodium Chloride, Dietary/adverse effects , Disease Models, Animal , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Presenilin-1/genetics , Presenilin-1/metabolism
17.
Chemistry ; 30(10): e202303476, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38065837

ABSTRACT

The construction of an all-in-one catalyst, in which the photosensitizer and the transition metal site are close to each other, is important for improving the efficiency of metallaphotoredox catalysis. However, the development of convenient synthetic strategies for the precise construction of an all-in-one catalyst remains a challenging task due to the requirement of precise installation of the catalytic sites. Herein, we have successfully established a facile bottom-up strategy for the direct synthesis of Ni(II)-incorporated covalent organic framework (COF), named LZU-713@Ni, as a versatile all-in-one metallaphotoredox catalyst. LZU-713@Ni showed excellent activity and recyclability in the photoredox/nickel-catalyzed C-O, C-S, and C-P cross-coupling reactions. Notably, this catalyst displayed a better catalytic activity than its homogeneous analogues, physically mixed dual catalyst system, and, especially, LZU-713/Ni which was prepared through post-synthetic modification. The improved catalytic efficiency of LZU-713@Ni should be attributed to the implementation of bottom-up strategy, which incorporated the fixed, ordered, and abundant catalytic sites into its framework. This work sheds new light on the exploration of concise and effective strategies for the construction of multifunctional COF-based photocatalysts.

18.
Angew Chem Int Ed Engl ; 63(6): e202313273, 2024 Feb 05.
Article in English | MEDLINE | ID: mdl-37906439

ABSTRACT

The difunctionalization of alkenes-a process that installs two functional groups in a single operation and transforms chemical feedstocks into value-added products-is one of the most appealing synthetic methods in contemporary chemistry. However, the introduction of two distinct functional groups via two readily accessible nucleophiles remains a formidable challenge. Existing intermolecular alkene azidocyanation methods, which primarily focus on aryl alkenes and rely on stoichiometric chemical oxidants. We report herein an unprecedented electrochemical strategy for alkene azidocyanation that is compatible with both alkyl and aryl alkenes. This is achieved by harnessing the finely-tuned anodic electron transfer and the strategic selection of copper/ligand complexes. The reactions of aryl alkenes were rendered enantioselective by employing a chiral ligand. Crucially, the mild conditions and well-regulated electrochemical process assure exceptional tolerance for various functional groups and substrate compatibility with both terminal and internal alkyl alkenes.

19.
EuroIntervention ; 19(11): e913-e922, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38060282

ABSTRACT

BACKGROUND: Electrical intravascular lithotripsy (E-IVL) uses shock waves to fracture calcified plaque. AIMS: We aimed to demonstrate the ability of laser IVL (L-IVL) to fracture calcified plaques in ex vivo human coronary arteries and to identify and evaluate the mechanisms for increased vessel compliance. METHODS: Shock waves were generated by a Ho:YAG (Holmium: yttrium-aluminium-garnet) laser (2 J, 5 Hz) and recorded by a high-speed camera and pressure sensor. Tests were conducted on phantoms and 19 fresh human coronary arteries. Before and after L-IVL, arterial compliance and optical coherence tomography (OCT) pullbacks were recorded, followed by histology. Additionally, microcomputed tomography (micro-CT) and scanning electron microscopy (SEM) were performed. Finite element models (FEM) were utilised to examine the mechanism of L-IVL. RESULTS: Phantom cracks were obtained using 230 µm and 400 µm fibres with shock-wave pressures of 84±5.0 atm and 62±0.4 atm, respectively. Post-lithotripsy, calcium plaque modifications, including fractures and debonding, were identified by OCT in 78% of the ex vivo calcified arteries (n=19). Histological analysis revealed calcium microfractures (38.7±10.4 µm width) in 57% of the arteries which were not visible by OCT. Calcium microfractures were verified by micro-CT and SEM. The lumen area increased from 2.9±0.4 to 4.3±0.8 mm2 (p<0.01). Arterial compliance increased by 2.3±0.6 atm/ml (p<0.05). FEM simulations suggest that debonding and intimal tears are additional mechanisms for increased arterial compliance. CONCLUSIONS: L-IVL has the capability to increase calcified coronary artery compliance by multiple mechanisms.


Subject(s)
Fractures, Stress , Lithotripsy, Laser , Vascular Calcification , Humans , Calcium , Coronary Vessels/diagnostic imaging , X-Ray Microtomography , Vascular Calcification/diagnostic imaging , Vascular Calcification/therapy , Treatment Outcome
20.
Chem Commun (Camb) ; 59(92): 13690-13702, 2023 Nov 16.
Article in English | MEDLINE | ID: mdl-37902025

ABSTRACT

Phenolic compounds are ubiquitous in nature because of their unique physical and chemical properties and wide applications, which have received extensive research attention. Phenolic compounds represented by tannic acid (TA) play an important role at the nanoscale. TA with a polyphenol hydroxyl structure can chemically react with organic or inorganic materials, among which metal-phenolic networks (MPNs) formed by coordination with metal ions and polyphenol derivatives formed by interactions with organic matter, exhibit specific properties and functions, and play key roles in photo(electro)catalysis. In this paper, we first introduce the fundamental properties of TA, then summarize the factors influencing the properties of MPNs and structural transformation of polyphenol-derived materials. Subsequently, the functions of MPNs and polyphenol derivatives in photo(electro)catalysis reactions are summarized, encompassing improving interfacial charge carrier separation, accelerating surface reaction kinetics, and enhancing light absorption. Finally, this article provides a comprehensive overview of the challenges and outlook associated with MPNs. Additionally, it presents novel insights into their stability, mechanistic analysis, synthesis, and applications in photo(electro)catalysis.

SELECTION OF CITATIONS
SEARCH DETAIL
...