Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Biodivers ; 21(6): e202301477, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38415906

ABSTRACT

Alkaloids are natural products that occur widely in many herbal plants. Anisodamine, widely present in the Solanaceae family, is an alkaloid extracted from the roots of the Anisodus tanguticus Maxim. It is an antagonist to M-choline receptors and exhibits diverse pharmacological effects, such as cholinolytic effect, calcium antagonist effect, anti-oxygenation effect. Anisodamine, a prominent constituent of the tropine alkaloid family, exhibits a range of pharmacological effects akin to those of atropine and scopolamine. owing to its low toxicity and moderate efficacy in clinical to wide applications, especially for varieties of shock treatment. However, there remains a dearth of research regarding the in vivo pharmacokinetics, mechanism of action, and toxicity of anisodamine. Consequently, this paper provides a comprehensive review of the anti-shock effects, toxicity, and pharmacokinetic characteristics of anisodamine to increase the understanding of its medicinal value, and provide reference and inspiration for the clinical application and further in-depth research of anisodamine.


Subject(s)
Solanaceous Alkaloids , Solanaceous Alkaloids/chemistry , Solanaceous Alkaloids/pharmacology , Solanaceous Alkaloids/pharmacokinetics , Humans , Animals , Solanaceae/chemistry , Shock/drug therapy , Shock/metabolism
2.
Nat Prod Res ; 33(12): 1727-1733, 2019 Jun.
Article in English | MEDLINE | ID: mdl-29457519

ABSTRACT

A new homoisoflavonoid, (3R)-5,7-dihydroxy-6-methyl-3-(2'-hydroxy-4'-methoxybenzyl)-chroman-4-one (1), namely polygonatone H, in addition to fourteen known homoisoflavones (2-15) were isolated from the rhizome of Polygonatum Cyrtonema Hua. The structures were identified with the aid of 1D/2D NMR spectroscopic technologies. Compounds 2, 6, 8, 10, 11, 13, and 15 were isolated from P. Cyrtonema for the first time. Compound 1 showed cytotoxicities to human cancer cell lines with IC50 values to comparable those of cisplatin.


Subject(s)
Antineoplastic Agents/isolation & purification , Isoflavones/isolation & purification , Isoflavones/toxicity , Polygonatum/chemistry , Rhizome/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line , Cytotoxins/chemistry , Cytotoxins/isolation & purification , Cytotoxins/pharmacology , Humans , Inhibitory Concentration 50 , Isoflavones/chemistry , Magnetic Resonance Spectroscopy , Molecular Structure
3.
Sci Rep ; 6: 37379, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27869212

ABSTRACT

Cassava (Manihot esculenta) shows strong tolerance to drought stress; however, the mechanisms underlying this tolerance are poorly understood. Ethylene response factor (ERF) family genes play a crucial role in plants responding to abiotic stress. Currently, less information is known regarding the ERF family in cassava. Herein, 147 ERF genes were characterized from cassava based on the complete genome data, which was further supported by phylogenetic relationship, gene structure, and conserved motif analyses. Transcriptome analysis suggested that most of the MeERF genes have similar expression profiles between W14 and Arg7 during organ development. Comparative expression profiles revealed that the function of MeERFs in drought tolerance may be differentiated in roots and leaves of different genotypes. W14 maintained strong tolerance by activating more MeERF genes in roots compared to Arg7 and SC124, whereas Arg7 and SC124 maintained drought tolerance by inducing more MeERF genes in leaves relative to W14. Expression analyses of the selected MeERF genes showed that most of them are significantly upregulated by osmotic and salt stresses, whereas slightly induced by cold stress. Taken together, this study identified candidate MeERF genes for genetic improvement of abiotic stress tolerance and provided new insights into ERF-mediated cassava tolerance to drought stress.


Subject(s)
Droughts , Gene Expression Regulation, Plant , Genome, Plant , Manihot/genetics , Multigene Family , Stress, Physiological/genetics , Transcription Factors/metabolism , Arabidopsis/genetics , Cold Temperature , Conserved Sequence/genetics , Gene Expression Profiling , Genes, Plant , Genotype , Nucleotide Motifs/genetics , Osmotic Pressure , Phylogeny , Plant Leaves/drug effects , Plant Leaves/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Reproducibility of Results , Sodium Chloride/pharmacology
4.
Front Plant Sci ; 7: 673, 2016.
Article in English | MEDLINE | ID: mdl-27242873

ABSTRACT

BACKGROUND: Platycodon grandiflorum is the only species in the genus Platycodon of the family Campanulaceae, which has been traditionally used as a medicinal plant for its lung-heat-clearing, antitussive, and expectorant properties in China, Japanese, and Korean. Oleanane-type triterpenoid saponins were the main chemical components of P. grandiflorum and platycodin D was the abundant and main bioactive component, but little is known about their biosynthesis in plants. Hence, P. grandiflorum is an ideal medicinal plant for studying the biosynthesis of Oleanane-type saponins. In addition, the genomic information of this important herbal plant is unavailable. PRINCIPAL FINDINGS: A total of 58,580,566 clean reads were obtained, which were assembled into 34,053 unigenes, with an average length of 936 bp and N50 of 1,661 bp by analyzing the transcriptome data of P. grandiflorum. Among these 34,053 unigenes, 22,409 unigenes (65.80%) were annotated based on the information available from public databases, including Nr, NCBI, Swiss-Prot, KOG, and KEGG. Furthermore, 21 candidate cytochrome P450 genes and 17 candidate UDP-glycosyltransferase genes most likely involved in triterpenoid saponins biosynthesis pathway were discovered from the transcriptome sequencing of P. grandiflorum. In addition, 10,626 SSRs were identified based on the transcriptome data, which would provide abundant candidates of molecular markers for genetic diversity and genetic map for this medicinal plant. CONCLUSION: The genomic data obtained from P. grandiflorum, especially the identification of putative genes involved in triterpenoid saponins biosynthesis pathway, will facilitate our understanding of the biosynthesis of triterpenoid saponins at molecular level.

5.
Front Plant Sci ; 7: 339, 2016.
Article in English | MEDLINE | ID: mdl-27066018

ABSTRACT

BACKGROUND: Dipsacus asperoides is a traditional Chinese medicinal crop. The root is generally used as a medicine and is frequently prescribed by Chinese doctors for the treatment of back pain, limb paralysis, flutter trauma, tendon injuries, and fractures. With the rapid development of bioinformatics, research has been focused on this species at the gene or molecular level. For purpose of fleshing out genome information about D. asperoides, in this paper we conducted transcriptome analysis of this species. PRINCIPAL FINDINGS: To date, many genes encoding enzymes involved in the biosynthesis of triterpenoid saponins in D.asperoides have not been elucidated. Illumina paired-end sequencing was employed to probe D. asperoides's various enzymes associated with the relevant mesostate. A total of 30, 832,805 clean reads and de novo spliced 43,243 unigenes were obtained. Of all unigenes, only 8.27% (3578) were successfully annotated in total of seven public databases: Nr, Nt, Swiss-Prot, GO, KOG, KEGG, and Pfam, which might be attributed to the poor studies on D. asperoides. The candidate genes encoding enzymes involved in triterpenoid saponin biosynthesis were identified and experimentally verified by reverse transcription qPCR, encompassing nine cytochrome P450s and 17 UDP-glucosyltransferases. Specifically, unearthly putative genes involved in the glycosylation of hederagenin were acquired. Simultaneously, 4490 SSRs from 43,243 examined sequences were determined via bioinformatics analysis. CONCLUSION: This study represents the first report on the use of the Illumina sequence platform on this crop at the transcriptome level. Our findings of candidate genes encoding enzymes involved in Dipsacus saponin VI biosynthes is provide novel information in efforts to further understand the triterpenoid metabolic pathway on this species. The initial genetics resources in this study will contribute significantly to the genetic breeding program of D. asperoides, and are beneficial for clinical diagnosis and treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...