Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 10(69): 42212-42220, 2020 Nov 17.
Article in English | MEDLINE | ID: mdl-35516768

ABSTRACT

In the present work, we reported the fabrication of a novel electrochemical sensing platform to detect 2,4-dichlorophenol (2,4-DCP) by using a copper benzene-1,3,5-tricarboxylate-graphene oxide (Cu-BTC/GO) composite. The sensor was prepared by drop-casting Cu-BTC/GO suspension onto the electrode surface followed by electrochemical reduction, leading to the generation of an electrochemically reduced graphene oxide network (ErGO). By combining the large specific area of the Cu-BTC matrix with the electrical percolation from the graphene network, the number of accessible reaction sites was strongly increased, which consequently improved the detection performance. The electrochemical characteristics of the composite were revealed by cyclic voltammetry and electrochemical impedance spectroscopy. For the detection of 2,4-DCP, differential pulse voltammetry was used to emphasize the faradaic reaction related to the oxidation of the analyte. The results displayed a low detection limit (83 × 10-9 M) and a linear range from 1.5 × 10-6 M to 24 × 10-6 M alongside high reproducibility (RSD = 2.5% for eight independent sensors) and good stability. Importantly, the prepared sensors were sufficiently selective against interference from other pollutants in the same electrochemical window. Notably, the presented sensors have already proven their ability in detecting 2,4-DCP in real field samples with high accuracy (recovery range = 97.17-104.15%).

2.
J Anal Methods Chem ; 2020: 6693595, 2020.
Article in English | MEDLINE | ID: mdl-33457037

ABSTRACT

In the present work, we reported the simple way to fabricate an electrochemical sensing platform to detect Bisphenol A (BPA) using galvanostatic deposition of Au on a glassy carbon electrode covered by cetyltrimethylammonium bromide (CTAB). This material (CTAB) enhances the sensitivity of electrochemical sensors with respect to the detection of BPA. The electrochemical response of the modified GCE to BPA was investigated by cyclic voltammetry and differential pulse voltammetry. The results displayed a low detection limit (22 nm) and a linear range from 0.025 to 10 µm along side with high reproducibility (RSD = 4.9% for seven independent sensors). Importantly, the prepared sensors were selective enough against interferences with other pollutants in the same electrochemical window. Notably, the presented sensors have already proven their ability in detecting BPA in real plastic water drinking bottle samples with high accuracy (recovery range = 96.60%-102.82%) and it is in good agreement with fluorescence measurements.

SELECTION OF CITATIONS
SEARCH DETAIL
...