Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nucleic Acids Res ; 2024 May 27.
Article in English | MEDLINE | ID: mdl-38801067

ABSTRACT

The RNA polymerase II carboxy-terminal domain (CTD) consists of conserved heptapeptide repeats that can be phosphorylated to influence distinct stages of the transcription cycle, including RNA processing. Although CTD-associated proteins have been identified, phospho-dependent CTD interactions have remained elusive. Proximity-dependent biotinylation (PDB) has recently emerged as an alternative approach to identify protein-protein associations in the native cellular environment. In this study, we present a PDB-based map of the fission yeast RNAPII CTD interactome in living cells and identify phospho-dependent CTD interactions by using a mutant in which Ser2 was replaced by alanine in every repeat of the fission yeast CTD. This approach revealed that CTD Ser2 phosphorylation is critical for the association between RNAPII and the histone methyltransferase Set2 during transcription elongation, but is not required for 3' end processing and transcription termination. Accordingly, loss of CTD Ser2 phosphorylation causes a global increase in antisense transcription, correlating with elevated histone acetylation in gene bodies. Our findings reveal that the fundamental role of CTD Ser2 phosphorylation is to establish a chromatin-based repressive state that prevents cryptic intragenic transcription initiation.

2.
Sci Adv ; 8(28): eabm9875, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35857496

ABSTRACT

RNA polymerase III (RNAPIII) synthesizes essential and abundant noncoding RNAs such as transfer RNAs. Controlling RNAPIII span of activity by accurate and efficient termination is a challenging necessity to ensure robust gene expression and to prevent conflicts with other DNA-associated machineries. The mechanism of RNAPIII termination is believed to be simpler than that of other eukaryotic RNA polymerases, solely relying on the recognition of a T-tract in the nontemplate strand. Here, we combine high-resolution genome-wide analyses and in vitro transcription termination assays to revisit the mechanism of RNAPIII transcription termination in budding yeast. We show that T-tracts are necessary but not always sufficient for termination and that secondary structures of the nascent RNAs are important auxiliary cis-acting elements. Moreover, we show that the helicase Sen1 plays a key role in a fail-safe termination pathway. Our results provide a comprehensive model illustrating how multiple mechanisms cooperate to ensure efficient RNAPIII transcription termination.


Subject(s)
RNA Polymerase III , Saccharomyces cerevisiae Proteins , DNA Helicases/metabolism , Genome-Wide Association Study , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic
3.
Nucleic Acids Res ; 50(3): 1430-1448, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35037029

ABSTRACT

Pervasive transcription is a universal phenomenon leading to the production of a plethora of non-coding RNAs. If left uncontrolled, pervasive transcription can be harmful for genome expression and stability. However, non-coding transcription can also play important regulatory roles, for instance by promoting the repression of specific genes by a mechanism of transcriptional interference. The efficiency of transcription termination can strongly influence the regulatory capacity of non-coding transcription events, yet very little is known about the mechanisms modulating the termination of non-coding transcription in response to environmental cues. Here, we address this question by investigating the mechanisms that regulate the activity of the main actor in termination of non-coding transcription in budding yeast, the helicase Sen1. We identify a phosphorylation at a conserved threonine of the catalytic domain of Sen1 and we provide evidence that phosphorylation at this site reduces the efficiency of Sen1-mediated termination. Interestingly, we find that this phosphorylation impairs termination at an unannotated non-coding gene, thus repressing the expression of a downstream gene encoding the master regulator of Zn homeostasis, Zap1. Consequently, many additional genes exhibit an expression pattern mimicking conditions of Zn excess, where ZAP1 is naturally repressed. Our findings provide a novel paradigm of gene regulatory mechanism relying on the direct modulation of non-coding transcription termination.


Subject(s)
Gene Expression Regulation, Fungal , Saccharomyces cerevisiae Proteins , Transcription Termination, Genetic , DNA Helicases/genetics , DNA Helicases/metabolism , RNA Helicases/genetics , RNA Helicases/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Transcription, Genetic
4.
EMBO J ; 39(7): e101548, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32107786

ABSTRACT

Pervasive transcription is a widespread phenomenon leading to the production of a plethora of non-coding RNAs (ncRNAs) without apparent function. Pervasive transcription poses a threat to proper gene expression that needs to be controlled. In yeast, the highly conserved helicase Sen1 restricts pervasive transcription by inducing termination of non-coding transcription. However, the mechanisms underlying the specific function of Sen1 at ncRNAs are poorly understood. Here, we identify a motif in an intrinsically disordered region of Sen1 that mimics the phosphorylated carboxy-terminal domain (CTD) of RNA polymerase II, and structurally characterize its recognition by the CTD-interacting domain of Nrd1, an RNA-binding protein that binds specific sequences in ncRNAs. In addition, we show that Sen1-dependent termination strictly requires CTD recognition by the N-terminal domain of Sen1. We provide evidence that the Sen1-CTD interaction does not promote initial Sen1 recruitment, but rather enhances Sen1 capacity to induce the release of paused RNAPII from the DNA. Our results shed light on the network of protein-protein interactions that control termination of non-coding transcription by Sen1.


Subject(s)
DNA Helicases/chemistry , DNA Helicases/metabolism , RNA Helicases/chemistry , RNA Helicases/metabolism , RNA Polymerase II/chemistry , RNA-Binding Proteins/chemistry , RNA-Binding Proteins/metabolism , Saccharomyces cerevisiae Proteins/chemistry , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae/metabolism , Binding Sites , Gene Expression Regulation, Fungal , Models, Molecular , Protein Binding , Protein Conformation , Protein Domains , RNA, Fungal/metabolism , RNA, Untranslated/metabolism , Saccharomyces cerevisiae/genetics , Transcription Termination, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...